Rigorous Derivation of a 1D Model from the 3D Non-Steady Navier-Stokes Equations for Compressible Nonlinearity Viscous Fluids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589084" target="_blank" >RIV/61989592:15310/18:73589084 - isvavai.cz</a>
Výsledek na webu
<a href="https://ejde.math.txstate.edu/Volumes/2018/114/andrasik.pdf" target="_blank" >https://ejde.math.txstate.edu/Volumes/2018/114/andrasik.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Rigorous Derivation of a 1D Model from the 3D Non-Steady Navier-Stokes Equations for Compressible Nonlinearity Viscous Fluids
Popis výsledku v původním jazyce
Problems with three-dimensional models lie very often in their large complexity leading to impossibility to find an analytical solution. Numerical solutions are sometimes an option, but they can be unduly complicated in the case of three-dimensional models. Frequently, researchers investigate models where one or even two dimensions are almost negligible and nothing important is occurring in them. These models can be simplified and turned into one- or two-dimensional models, which is very helpful, because their solutions are easier than solutions of the original three-dimensional models. Since nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-dimensional domain belongs to the class of models which need a simplification, when possible, to be eifectively solved, we performed a dimension reduction for this model. We studied the dynamics of a compressible fluid in thin domains where only one dimension is dominant. We present a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations.
Název v anglickém jazyce
Rigorous Derivation of a 1D Model from the 3D Non-Steady Navier-Stokes Equations for Compressible Nonlinearity Viscous Fluids
Popis výsledku anglicky
Problems with three-dimensional models lie very often in their large complexity leading to impossibility to find an analytical solution. Numerical solutions are sometimes an option, but they can be unduly complicated in the case of three-dimensional models. Frequently, researchers investigate models where one or even two dimensions are almost negligible and nothing important is occurring in them. These models can be simplified and turned into one- or two-dimensional models, which is very helpful, because their solutions are easier than solutions of the original three-dimensional models. Since nonsteady Navier-Stokes equations for compressible nonlinearly viscous fluids in a three-dimensional domain belongs to the class of models which need a simplification, when possible, to be eifectively solved, we performed a dimension reduction for this model. We studied the dynamics of a compressible fluid in thin domains where only one dimension is dominant. We present a rigorous derivation of a one-dimensional model from the three-dimensional Navier-Stokes equations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Differential Equations
ISSN
1072-6691
e-ISSN
—
Svazek periodika
2018
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
"114-1"-"114-21"
Kód UT WoS článku
000432745500001
EID výsledku v databázi Scopus
2-s2.0-85047163565