Residuation in non-associative MV-algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590107" target="_blank" >RIV/61989592:15310/18:73590107 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/ms-2017-0181" target="_blank" >http://dx.doi.org/10.1515/ms-2017-0181</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2017-0181" target="_blank" >10.1515/ms-2017-0181</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Residuation in non-associative MV-algebras
Popis výsledku v původním jazyce
It is well known that every MV-algebra can be converted into a residuated lattice satisfying divisibility and the double negation law. In a previous paper the first author and J. Kuhr introduced the concept of an NMV-algebra which is a non-associative modification of an MV-algebra. The natural question arises if an NMV-algebra can be converted into a residuated structure, too. Contrary to MV-algebras, NMV-algebras are not based on lattices but only on directed posets and the binary operation need not be associative and hence we cannot expect to obtain a residuated lattice but only an essentially weaker structure called a conditionally residuated poset. Considering several additional natural conditions we show that every NMV-algebra can be converted in such a structure. Also conversely, every such structure can be organized into an NMV-algebra. Further, we study an a bit more stronger version of an algebra where the binary operation is even monotone. We show that such an algebra can be organized into a residuated poset and, conversely, every residuated poset can be converted in this structure. (C) 2018 Mathematical Institute Slovak Academy of Sciences
Název v anglickém jazyce
Residuation in non-associative MV-algebras
Popis výsledku anglicky
It is well known that every MV-algebra can be converted into a residuated lattice satisfying divisibility and the double negation law. In a previous paper the first author and J. Kuhr introduced the concept of an NMV-algebra which is a non-associative modification of an MV-algebra. The natural question arises if an NMV-algebra can be converted into a residuated structure, too. Contrary to MV-algebras, NMV-algebras are not based on lattices but only on directed posets and the binary operation need not be associative and hence we cannot expect to obtain a residuated lattice but only an essentially weaker structure called a conditionally residuated poset. Considering several additional natural conditions we show that every NMV-algebra can be converted in such a structure. Also conversely, every such structure can be organized into an NMV-algebra. Further, we study an a bit more stronger version of an algebra where the binary operation is even monotone. We show that such an algebra can be organized into a residuated poset and, conversely, every residuated poset can be converted in this structure. (C) 2018 Mathematical Institute Slovak Academy of Sciences
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Svazek periodika
68
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
8
Strana od-do
1313-1320
Kód UT WoS článku
000451461500002
EID výsledku v databázi Scopus
2-s2.0-85057746665