Operations and structures derived from non-associative MV-algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597865" target="_blank" >RIV/61989592:15310/19:73597865 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs00500-018-3309-4.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00500-018-3309-4.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-018-3309-4" target="_blank" >10.1007/s00500-018-3309-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Operations and structures derived from non-associative MV-algebras
Popis výsledku v původním jazyce
The so-called non-associative MV-algebras were introduced recently by the first author and J. Kühr in order to have an appropriate tool for certain logics used in expert systems where associativity of the binary operation is excluded, see, e.g., Botur and Halaš (Arch Math Log 48:243–255, 2009). Since implication is an important logical connective in practically every propositional logic, in the present paper we investigate the implication reducts of non-associative MV-algebras. We also determine their structures based on the underlying posets. The natural question when a poset with the greatest element equipped with sectional switching involutions can be organized into an implication NMV-algebra is solved. Moreover, congruence properties of the variety of implication NMV-algebras with, respectively, without zero are investigated. Analogously to classical propositional logic, we introduce a certain kind of Sheffer operation and we obtain a one-to-one correspondence between NMV-algebras and certain algebras built up by a Sheffer-like operation together with a unary operation.
Název v anglickém jazyce
Operations and structures derived from non-associative MV-algebras
Popis výsledku anglicky
The so-called non-associative MV-algebras were introduced recently by the first author and J. Kühr in order to have an appropriate tool for certain logics used in expert systems where associativity of the binary operation is excluded, see, e.g., Botur and Halaš (Arch Math Log 48:243–255, 2009). Since implication is an important logical connective in practically every propositional logic, in the present paper we investigate the implication reducts of non-associative MV-algebras. We also determine their structures based on the underlying posets. The natural question when a poset with the greatest element equipped with sectional switching involutions can be organized into an implication NMV-algebra is solved. Moreover, congruence properties of the variety of implication NMV-algebras with, respectively, without zero are investigated. Analogously to classical propositional logic, we introduce a certain kind of Sheffer operation and we obtain a one-to-one correspondence between NMV-algebras and certain algebras built up by a Sheffer-like operation together with a unary operation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOFT COMPUTING
ISSN
1432-7643
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
3935-3944
Kód UT WoS článku
000466948100004
EID výsledku v databázi Scopus
2-s2.0-85048593417