Transfer-stable means on finite chains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597072" target="_blank" >RIV/61989592:15310/19:73597072 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011418307851" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011418307851</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.10.009" target="_blank" >10.1016/j.fss.2018.10.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer-stable means on finite chains
Popis výsledku v původním jazyce
According to [5], the arithmetic mean is a function characterized by four features: it is non-decreasing, idempotent, symmetric and additive. The first three of them can be naturally converted to the theory of posets but the last one generally can not. Due to this problem, we will replace it with another suitable property, which is called transfer-stability. However, we do not get the exact arithmetic mean but some approximation. These functions will be called transfer-stable means. The first aim of the paper is to show that transfer-stable means on a finite chain form a lattice which is isomorphic to the direct power of a finite chain. The second goal is to create a generating set of transfer-stable means, i.e., means that can generate all other transfer-stable means of the same arity by classical composition of functions. The last goal deals with question of how to generate all transfer-stable means of any arity by binary transfer-stable means only. For this problem we define special transfer-stable means composition.
Název v anglickém jazyce
Transfer-stable means on finite chains
Popis výsledku anglicky
According to [5], the arithmetic mean is a function characterized by four features: it is non-decreasing, idempotent, symmetric and additive. The first three of them can be naturally converted to the theory of posets but the last one generally can not. Due to this problem, we will replace it with another suitable property, which is called transfer-stability. However, we do not get the exact arithmetic mean but some approximation. These functions will be called transfer-stable means. The first aim of the paper is to show that transfer-stable means on a finite chain form a lattice which is isomorphic to the direct power of a finite chain. The second goal is to create a generating set of transfer-stable means, i.e., means that can generate all other transfer-stable means of the same arity by classical composition of functions. The last goal deals with question of how to generate all transfer-stable means of any arity by binary transfer-stable means only. For this problem we define special transfer-stable means composition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-06915S" target="_blank" >GA18-06915S: Nové přístupy k agregačním operátorům v analýze a zpracování dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
—
Svazek periodika
372
Číslo periodika v rámci svazku
OCT
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
111-123
Kód UT WoS článku
000471235100007
EID výsledku v databázi Scopus
2-s2.0-85055286453