Transfer-stable aggregation functions on finite lattices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603601" target="_blank" >RIV/61989592:15310/20:73603601 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025520301262" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025520301262</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2020.02.043" target="_blank" >10.1016/j.ins.2020.02.043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Transfer-stable aggregation functions on finite lattices
Popis výsledku v původním jazyce
The paper by Z. Kurač, 2019 deals with a new property, the so-called transfer-stability, characterizing the arithmetic mean. With this property, it is possible to define special forms of arithmetic mean on finite chains. The idempotence property was required for this definition. In this paper, we neglect this necessity and deal only with transfer-stable aggregation functions. Thanks to this fact, it is possible to define these aggregation functions on any finite lattice (hereinafter “lattice”) and not only on finite chains. Transfer-stable aggregation functions can be defined on any finite lattice. Nevertheless, there is a subclass of finite lattices, the so-called transfer-stable lattices, where the behavior of the transfer-stable aggregation functions is simply described because the transfer-stability classes are linearly ordered. Therefore, the main goal of this paper is characterization of these transfer-stable lattices. The second half of the paper deals with some useful properties associated with the lattice of all k-ary transfer-stable aggregation functions.
Název v anglickém jazyce
Transfer-stable aggregation functions on finite lattices
Popis výsledku anglicky
The paper by Z. Kurač, 2019 deals with a new property, the so-called transfer-stability, characterizing the arithmetic mean. With this property, it is possible to define special forms of arithmetic mean on finite chains. The idempotence property was required for this definition. In this paper, we neglect this necessity and deal only with transfer-stable aggregation functions. Thanks to this fact, it is possible to define these aggregation functions on any finite lattice (hereinafter “lattice”) and not only on finite chains. Transfer-stable aggregation functions can be defined on any finite lattice. Nevertheless, there is a subclass of finite lattices, the so-called transfer-stable lattices, where the behavior of the transfer-stable aggregation functions is simply described because the transfer-stability classes are linearly ordered. Therefore, the main goal of this paper is characterization of these transfer-stable lattices. The second half of the paper deals with some useful properties associated with the lattice of all k-ary transfer-stable aggregation functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-06915S" target="_blank" >GA18-06915S: Nové přístupy k agregačním operátorům v analýze a zpracování dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
—
Svazek periodika
521
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
88-106
Kód UT WoS článku
000527015900007
EID výsledku v databázi Scopus
2-s2.0-85079842909