The Logic of Lattice Effect Algebras Based on Induced Groupoids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597321" target="_blank" >RIV/61989592:15310/19:73597321 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14310/19:00112273
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333177207" target="_blank" >https://obd.upol.cz/id_publ/333177207</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Logic of Lattice Effect Algebras Based on Induced Groupoids
Popis výsledku v původním jazyce
Effect algebras were introduced by Foulis and Bennett as the so-called quantum structures which describe quantum effects and are determined by the behaviour of bounded self-adjoint operators on the phase space of the corresponding physical system which is a Hilbert space. From the algebraic point of view, the problem is that effect algebras are only partial ones and hence there can be drawbacks when we apply them for a construction of algebraic semantics of the corresponding logic of quantum mechanics. If the effect algebra in question is lattice-ordered this disadvantage can be overcome by using a representation of an equivalent algebra with everywhere defined operations. In our paper, this algebra is a groupoid equipped with one more unary operation which is an antitone involution. It enables us to introduce suitable axioms and inherence rules for the algebraic semantics of the corresponding logic and to prove that this logic is sound and complete.
Název v anglickém jazyce
The Logic of Lattice Effect Algebras Based on Induced Groupoids
Popis výsledku anglicky
Effect algebras were introduced by Foulis and Bennett as the so-called quantum structures which describe quantum effects and are determined by the behaviour of bounded self-adjoint operators on the phase space of the corresponding physical system which is a Hilbert space. From the algebraic point of view, the problem is that effect algebras are only partial ones and hence there can be drawbacks when we apply them for a construction of algebraic semantics of the corresponding logic of quantum mechanics. If the effect algebra in question is lattice-ordered this disadvantage can be overcome by using a representation of an equivalent algebra with everywhere defined operations. In our paper, this algebra is a groupoid equipped with one more unary operation which is an antitone involution. It enables us to introduce suitable axioms and inherence rules for the algebraic semantics of the corresponding logic and to prove that this logic is sound and complete.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING
ISSN
1542-3980
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
161-175
Kód UT WoS článku
000486419800002
EID výsledku v databázi Scopus
2-s2.0-85072623040