Residuation in finite posets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609345" target="_blank" >RIV/61989592:15310/21:73609345 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/pdf/1910.09009.pdf" target="_blank" >https://arxiv.org/pdf/1910.09009.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2021-0021" target="_blank" >10.1515/ms-2021-0021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Residuation in finite posets
Popis výsledku v původním jazyce
When an algebraic logic based on a poset instead of a lattice is investigated then there is a natural problem how to introduce implication to be everywhere defined and satisfying (left) adjointness with conjunction. We have already studied this problem for the logic of quantum mechanics which is based on an orthomodular poset or the logic of quantum effects based on a so-called effect algebra which is only partial and need not be lattice-ordered. For this, we introduced the so-called operator residuation where the values of implication and conjunction need not be elements of the underlying poset, but only certain subsets of it. However, this approach can be generalized for posets satisfying more general conditions. If these posets are even finite, we can focus on maximal or minimal elements of the corresponding subsets and the formulas for the mentioned operators can be essentially simplified. This is shown in the present paper where all theorems are explained by corresponding examples.
Název v anglickém jazyce
Residuation in finite posets
Popis výsledku anglicky
When an algebraic logic based on a poset instead of a lattice is investigated then there is a natural problem how to introduce implication to be everywhere defined and satisfying (left) adjointness with conjunction. We have already studied this problem for the logic of quantum mechanics which is based on an orthomodular poset or the logic of quantum effects based on a so-called effect algebra which is only partial and need not be lattice-ordered. For this, we introduced the so-called operator residuation where the values of implication and conjunction need not be elements of the underlying poset, but only certain subsets of it. However, this approach can be generalized for posets satisfying more general conditions. If these posets are even finite, we can focus on maximal or minimal elements of the corresponding subsets and the formulas for the mentioned operators can be essentially simplified. This is shown in the present paper where all theorems are explained by corresponding examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
—
Svazek periodika
71
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
14
Strana od-do
"807 "- 820
Kód UT WoS článku
000680658600001
EID výsledku v databázi Scopus
2-s2.0-85107937064