Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Algebraic structures formalizing the logic of effect algebras incorporating time dimension

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73626982" target="_blank" >RIV/61989592:15310/24:73626982 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.degruyter.com/journal/key/ms/74/6/html" target="_blank" >https://www.degruyter.com/journal/key/ms/74/6/html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1515/ms-2024-0098" target="_blank" >10.1515/ms-2024-0098</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Algebraic structures formalizing the logic of effect algebras incorporating time dimension

  • Popis výsledku v původním jazyce

    Effect algebras were introduced in order to describe the structure of effects, i.e. events in quantum mechanics. They are partial algebras describing the logic behind the corresponding events. It is natural to ask how to introduce the logical connective implication in this logic. For lattice ordered effect algebras this task was already solved. We concentrate on effect algebras which need not be lattice ordered since they better describe the events occuring in quantum physical systems. Although an effect algebra is only partial, we find a logical connective implication which is everywhere defined. However, such implication is &quot;unsharp&quot; because its ouputs for given pairs of entries need not be elements of the underlying effect algebra but may be subsets of mutually incomparable elemets. We introduce such an implication together with its adjoint functor representing conjunction. Then we consider the so-called tense operators on effect algebras for a given time frame with a given time preference relation. Finally, for a given tense operators and given time set we describe two methods how to construct a time preference relation such that the given tense operators are either comparable with or equaivalent to those induced by this time frame..

  • Název v anglickém jazyce

    Algebraic structures formalizing the logic of effect algebras incorporating time dimension

  • Popis výsledku anglicky

    Effect algebras were introduced in order to describe the structure of effects, i.e. events in quantum mechanics. They are partial algebras describing the logic behind the corresponding events. It is natural to ask how to introduce the logical connective implication in this logic. For lattice ordered effect algebras this task was already solved. We concentrate on effect algebras which need not be lattice ordered since they better describe the events occuring in quantum physical systems. Although an effect algebra is only partial, we find a logical connective implication which is everywhere defined. However, such implication is &quot;unsharp&quot; because its ouputs for given pairs of entries need not be elements of the underlying effect algebra but may be subsets of mutually incomparable elemets. We introduce such an implication together with its adjoint functor representing conjunction. Then we consider the so-called tense operators on effect algebras for a given time frame with a given time preference relation. Finally, for a given tense operators and given time set we describe two methods how to construct a time preference relation such that the given tense operators are either comparable with or equaivalent to those induced by this time frame..

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematica Slovaca

  • ISSN

    0139-9918

  • e-ISSN

    1337-2211

  • Svazek periodika

    74

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    SK - Slovenská republika

  • Počet stran výsledku

    16

  • Strana od-do

    "1353 "- 1368

  • Kód UT WoS článku

    001371821400015

  • EID výsledku v databázi Scopus

    2-s2.0-85217066091