Algebraic structures formalizing the logic of effect algebras incorporating time dimension
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73626982" target="_blank" >RIV/61989592:15310/24:73626982 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.degruyter.com/journal/key/ms/74/6/html" target="_blank" >https://www.degruyter.com/journal/key/ms/74/6/html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/ms-2024-0098" target="_blank" >10.1515/ms-2024-0098</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algebraic structures formalizing the logic of effect algebras incorporating time dimension
Popis výsledku v původním jazyce
Effect algebras were introduced in order to describe the structure of effects, i.e. events in quantum mechanics. They are partial algebras describing the logic behind the corresponding events. It is natural to ask how to introduce the logical connective implication in this logic. For lattice ordered effect algebras this task was already solved. We concentrate on effect algebras which need not be lattice ordered since they better describe the events occuring in quantum physical systems. Although an effect algebra is only partial, we find a logical connective implication which is everywhere defined. However, such implication is "unsharp" because its ouputs for given pairs of entries need not be elements of the underlying effect algebra but may be subsets of mutually incomparable elemets. We introduce such an implication together with its adjoint functor representing conjunction. Then we consider the so-called tense operators on effect algebras for a given time frame with a given time preference relation. Finally, for a given tense operators and given time set we describe two methods how to construct a time preference relation such that the given tense operators are either comparable with or equaivalent to those induced by this time frame..
Název v anglickém jazyce
Algebraic structures formalizing the logic of effect algebras incorporating time dimension
Popis výsledku anglicky
Effect algebras were introduced in order to describe the structure of effects, i.e. events in quantum mechanics. They are partial algebras describing the logic behind the corresponding events. It is natural to ask how to introduce the logical connective implication in this logic. For lattice ordered effect algebras this task was already solved. We concentrate on effect algebras which need not be lattice ordered since they better describe the events occuring in quantum physical systems. Although an effect algebra is only partial, we find a logical connective implication which is everywhere defined. However, such implication is "unsharp" because its ouputs for given pairs of entries need not be elements of the underlying effect algebra but may be subsets of mutually incomparable elemets. We introduce such an implication together with its adjoint functor representing conjunction. Then we consider the so-called tense operators on effect algebras for a given time frame with a given time preference relation. Finally, for a given tense operators and given time set we describe two methods how to construct a time preference relation such that the given tense operators are either comparable with or equaivalent to those induced by this time frame..
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematica Slovaca
ISSN
0139-9918
e-ISSN
1337-2211
Svazek periodika
74
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
16
Strana od-do
"1353 "- 1368
Kód UT WoS článku
001371821400015
EID výsledku v databázi Scopus
2-s2.0-85217066091