Adaptive compressive tomography: A numerical study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73598309" target="_blank" >RIV/61989592:15310/19:73598309 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.100.012346" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.100.012346</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.100.012346" target="_blank" >10.1103/PhysRevA.100.012346</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adaptive compressive tomography: A numerical study
Popis výsledku v původním jazyce
We perform several numerical studies for our recently published adaptive compressive tomography scheme [D. Ahn et al., Phys. Rev. Lett. 122, 100404 (2019)], which significantly reduces the number of measurement settings to unambiguously reconstruct any rank-deficient state without any a priori knowledge besides its dimension. We show that both entangled and product bases chosen by our adaptive scheme perform comparably well with recently known compressed-sensing element-probing measurements, and also beat random measurement bases for low-rank quantum states. We also numerically conjecture asymptotic scaling behaviors for this number as a function of the state rank for our adaptive schemes. These scaling formulas appear to be independent of the Hilbert-space dimension. As a natural development, we establish a faster hybrid compressive scheme that first chooses random bases, and later adaptive bases as the scheme progresses. As an epilogue, we reiterate important elements of informational completeness for our adaptive scheme.
Název v anglickém jazyce
Adaptive compressive tomography: A numerical study
Popis výsledku anglicky
We perform several numerical studies for our recently published adaptive compressive tomography scheme [D. Ahn et al., Phys. Rev. Lett. 122, 100404 (2019)], which significantly reduces the number of measurement settings to unambiguously reconstruct any rank-deficient state without any a priori knowledge besides its dimension. We show that both entangled and product bases chosen by our adaptive scheme perform comparably well with recently known compressed-sensing element-probing measurements, and also beat random measurement bases for low-rank quantum states. We also numerically conjecture asymptotic scaling behaviors for this number as a function of the state rank for our adaptive schemes. These scaling formulas appear to be independent of the Hilbert-space dimension. As a natural development, we establish a faster hybrid compressive scheme that first chooses random bases, and later adaptive bases as the scheme progresses. As an epilogue, we reiterate important elements of informational completeness for our adaptive scheme.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-04291S" target="_blank" >GA18-04291S: Fundamentální meze rozlišení v optické detekci a metrologii.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PHYSICAL REVIEW A
ISSN
2469-9926
e-ISSN
—
Svazek periodika
100
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"012346-1"-"1-012346-11"
Kód UT WoS článku
000477881400004
EID výsledku v databázi Scopus
2-s2.0-85069847078