High frequency acoustic emission monitoring in nano-impact of alumina and partially stabilised zirconia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73600719" target="_blank" >RIV/61989592:15310/20:73600719 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26620/20:PU140213 RIV/68378271:_____/20:00561956
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0921509320302458" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921509320302458</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2020.139159" target="_blank" >10.1016/j.msea.2020.139159</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High frequency acoustic emission monitoring in nano-impact of alumina and partially stabilised zirconia
Popis výsledku v původním jazyce
High frequency acoustic emission monitoring is proving a useful technique in improving the understanding of deformation processes occurring in nano- and micro-scale mechanical contacts. In this study AE monitoring has been used to investigate the fracture of alumina and MgO-partially stabilised zirconia (PSZ) at high strain rate in repetitive nano-impact tests with cube-corner and 5 μm radius spherical diamond indenters. Focussed ion beam milling of impact craters revealed sub-surface intergranular cracking on alumina and sub-surface transgranular cracking on PSZ. The evolution of AE through the test was strongly dependent on the geometry of the indenter used to create the impacts. AE energy was generally much higher when impacts cause rapid increases in penetration depth, with single high energy hits observed on abrupt depth bursts in tests with the cube corner indenter. The damage progression in tests with the spherical indenter differed between the ceramics, with more AE events near the start of the test on alumina and later in the test for PSZ. Reasons for these differences are discussed.
Název v anglickém jazyce
High frequency acoustic emission monitoring in nano-impact of alumina and partially stabilised zirconia
Popis výsledku anglicky
High frequency acoustic emission monitoring is proving a useful technique in improving the understanding of deformation processes occurring in nano- and micro-scale mechanical contacts. In this study AE monitoring has been used to investigate the fracture of alumina and MgO-partially stabilised zirconia (PSZ) at high strain rate in repetitive nano-impact tests with cube-corner and 5 μm radius spherical diamond indenters. Focussed ion beam milling of impact craters revealed sub-surface intergranular cracking on alumina and sub-surface transgranular cracking on PSZ. The evolution of AE through the test was strongly dependent on the geometry of the indenter used to create the impacts. AE energy was generally much higher when impacts cause rapid increases in penetration depth, with single high energy hits observed on abrupt depth bursts in tests with the cube corner indenter. The damage progression in tests with the spherical indenter differed between the ceramics, with more AE events near the start of the test on alumina and later in the test for PSZ. Reasons for these differences are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20504 - Ceramics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING
ISSN
0921-5093
e-ISSN
—
Svazek periodika
780
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
11
Strana od-do
"139159-1"-"139159-11"
Kód UT WoS článku
000524357800008
EID výsledku v databázi Scopus
2-s2.0-85081126242