Almost geodesics and special affine connection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602014" target="_blank" >RIV/61989592:15310/20:73602014 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00025-020-01251-y" target="_blank" >https://link.springer.com/article/10.1007%2Fs00025-020-01251-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-020-01251-y" target="_blank" >10.1007/s00025-020-01251-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Almost geodesics and special affine connection
Popis výsledku v původním jazyce
In the present paper we continue to study almost geodesic curves and determine in Rn the form of curves C for which every image under an (n- 1 ) -dimensional algebraic torus is also an almost geodesic with respect to an affine connection ∇ with constant coefficients. We also calculate explicitly the components of ∇. For the explicit calculation of the form of curves C in the n-dimensional real space Rn that are almost geodesics with respect to an affine connection ∇ , we can suppose that with C all images of C under a real (n- 1 ) -dimensional algebraic torus are also almost geodesics. This implies that the determination of C becomes an algebraic problem. Here we use E. Beltrami’s result that a differentiable curve is a local geodesic with respect to an affine connection ∇ precisely if it is a solution of an abelian differential equation with coefficients that are functions of the components of ∇. Now we consider the special case for the connection ∇ in which every curve is almost geodesic with respect to ∇.
Název v anglickém jazyce
Almost geodesics and special affine connection
Popis výsledku anglicky
In the present paper we continue to study almost geodesic curves and determine in Rn the form of curves C for which every image under an (n- 1 ) -dimensional algebraic torus is also an almost geodesic with respect to an affine connection ∇ with constant coefficients. We also calculate explicitly the components of ∇. For the explicit calculation of the form of curves C in the n-dimensional real space Rn that are almost geodesics with respect to an affine connection ∇ , we can suppose that with C all images of C under a real (n- 1 ) -dimensional algebraic torus are also almost geodesics. This implies that the determination of C becomes an algebraic problem. Here we use E. Beltrami’s result that a differentiable curve is a local geodesic with respect to an affine connection ∇ precisely if it is a solution of an abelian differential equation with coefficients that are functions of the components of ∇. Now we consider the special case for the connection ∇ in which every curve is almost geodesic with respect to ∇.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Svazek periodika
75
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
8
Strana od-do
"127-1"-"127-8"
Kód UT WoS článku
000552394900002
EID výsledku v databázi Scopus
2-s2.0-85088016527