Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n-Valued Impulses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73602184" target="_blank" >RIV/61989592:15310/20:73602184 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/10/1701/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/10/1701/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8101701" target="_blank" >10.3390/math8101701</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n-Valued Impulses
Popis výsledku v původním jazyce
Ordinary differential equations with n-valued impulses are examined via the associated Poincare translation operators from three perspectives: (i) the lower estimate of the number of periodic solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined implicitly by the generating vector fields, jointly with Devaney's chaos on these attractors of the related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions (Examples 1-3) and fractal attractors (Examples 4 and 5).
Název v anglickém jazyce
Multiple Periodic Solutions and Fractal Attractors of Differential Equations with n-Valued Impulses
Popis výsledku anglicky
Ordinary differential equations with n-valued impulses are examined via the associated Poincare translation operators from three perspectives: (i) the lower estimate of the number of periodic solutions on the compact subsets of Euclidean spaces and, in particular, on tori; (ii) weakly locally stable (i.e., non-ejective in the sense of Browder) invariant sets; (iii) fractal attractors determined implicitly by the generating vector fields, jointly with Devaney's chaos on these attractors of the related shift dynamical systems. For (i), the multiplicity criteria can be effectively expressed in terms of the Nielsen numbers of the impulsive maps. For (ii) and (iii), the invariant sets and attractors can be obtained as the fixed points of topologically conjugated operators to induced impulsive maps in the hyperspaces of the compact subsets of the original basic spaces, endowed with the Hausdorff metric. Five illustrative examples of the main theorems are supplied about multiple periodic solutions (Examples 1-3) and fractal attractors (Examples 4 and 5).
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
"1701-1"-"1701-21"
Kód UT WoS článku
000586911300001
EID výsledku v databázi Scopus
2-s2.0-85092915848