Parametric topological entropy and differential equations with time–dependent impulses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73612503" target="_blank" >RIV/61989592:15310/22:73612503 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022039622000948" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039622000948</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2022.02.008" target="_blank" >10.1016/j.jde.2022.02.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parametric topological entropy and differential equations with time–dependent impulses
Popis výsledku v původním jazyce
Stimulated by a multiple solvability of periodic boundary value problems to differential equations with time–dependent impulses, we recall a related definition of parametric topological entropy for a sequence of continuous self–maps on a compact metric space. The main simple idea consists in replacing the iterates of a single map by the compositions of several various maps. For an equicontinuous countable family of self–maps on a compact connected polyhedron, we develop a lower estimate of this entropy in terms of the asymptotic Nielsen numbers of their compositions. This Ivanov–type equality is then applied, via the associated Poincaré translation operators, to differential equations with time–dependent impulses on tori. If the supporting space differs from a homotopy type of tori, then the situation becomes more delicate. Nevertheless, on compact connected punctured surfaces, we are still able to apply in a similar way the Artin braid group theory to planar differential equations with a finite number of homeomorphic impulses. Some further possibilities are commented in remarks and several illustrative examples are supplied.
Název v anglickém jazyce
Parametric topological entropy and differential equations with time–dependent impulses
Popis výsledku anglicky
Stimulated by a multiple solvability of periodic boundary value problems to differential equations with time–dependent impulses, we recall a related definition of parametric topological entropy for a sequence of continuous self–maps on a compact metric space. The main simple idea consists in replacing the iterates of a single map by the compositions of several various maps. For an equicontinuous countable family of self–maps on a compact connected polyhedron, we develop a lower estimate of this entropy in terms of the asymptotic Nielsen numbers of their compositions. This Ivanov–type equality is then applied, via the associated Poincaré translation operators, to differential equations with time–dependent impulses on tori. If the supporting space differs from a homotopy type of tori, then the situation becomes more delicate. Nevertheless, on compact connected punctured surfaces, we are still able to apply in a similar way the Artin braid group theory to planar differential equations with a finite number of homeomorphic impulses. Some further possibilities are commented in remarks and several illustrative examples are supplied.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
1090-2732
Svazek periodika
317
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
365-386
Kód UT WoS článku
000820181800002
EID výsledku v databázi Scopus
2-s2.0-85124494663