Parametric Topological Entropy for Multivalued Maps and Differential Inclusions with Nonautonomous Impulses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619697" target="_blank" >RIV/61989592:15310/23:73619697 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/10.1142/S0218127423501122" target="_blank" >https://www.worldscientific.com/doi/10.1142/S0218127423501122</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218127423501134" target="_blank" >10.1142/S0218127423501134</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parametric Topological Entropy for Multivalued Maps and Differential Inclusions with Nonautonomous Impulses
Popis výsledku v původním jazyce
The main purpose of this paper is to investigate a parametric topological entropy for impulsive differential inclusions on tori. In this way, besides other matters, we would like to extend our recent results concerning impulsive differential equations as well as those on "nonparametric" topological entropy to impulsive differential inclusions. Parametric topological entropy, which is usually called a topological entropy for nonautonomous dynamical systems, is considered here via the compositions of associated multivalued Poincare translation operators with the single-valued time-dependent impulsive maps. On compact polyhedra and, in particular on tori, parametric topological entropy for families of admissible multivalued maps can be estimated from below by means Ivanov-type inequality in terms of the asymptotic Nielsen and Lefschetz numbers which are, unlike the topological entropy, homotopy invariants. In the scalar case, an effective criterion for a positive parametric topological entropy can be given by topological degree arguments for equi-continuous impulsive maps. In a single-valued nonparametric case, a positive topological entropy usually signifies topological chaos. Some simple illustrative examples are provided.
Název v anglickém jazyce
Parametric Topological Entropy for Multivalued Maps and Differential Inclusions with Nonautonomous Impulses
Popis výsledku anglicky
The main purpose of this paper is to investigate a parametric topological entropy for impulsive differential inclusions on tori. In this way, besides other matters, we would like to extend our recent results concerning impulsive differential equations as well as those on "nonparametric" topological entropy to impulsive differential inclusions. Parametric topological entropy, which is usually called a topological entropy for nonautonomous dynamical systems, is considered here via the compositions of associated multivalued Poincare translation operators with the single-valued time-dependent impulsive maps. On compact polyhedra and, in particular on tori, parametric topological entropy for families of admissible multivalued maps can be estimated from below by means Ivanov-type inequality in terms of the asymptotic Nielsen and Lefschetz numbers which are, unlike the topological entropy, homotopy invariants. In the scalar case, an effective criterion for a positive parametric topological entropy can be given by topological degree arguments for equi-continuous impulsive maps. In a single-valued nonparametric case, a positive topological entropy usually signifies topological chaos. Some simple illustrative examples are provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering
ISSN
0218-1274
e-ISSN
1793-6551
Svazek periodika
33
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
13
Strana od-do
"2350113-1"-"2350113-13"
Kód UT WoS článku
001043906900014
EID výsledku v databázi Scopus
2-s2.0-85168768476