Parametric topological entropy and differential equations with time-dependent impulses II: Multivalued case
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619698" target="_blank" >RIV/61989592:15310/23:73619698 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022039623003698" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022039623003698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2023.05.030" target="_blank" >10.1016/j.jde.2023.05.030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parametric topological entropy and differential equations with time-dependent impulses II: Multivalued case
Popis výsledku v původním jazyce
The main aim of this article is to establish an effective criterion for a positive parametric topological entropy to differential equations with multivalued nonautonomous impulses on tori. The crucial tool for this goal consists in developing an appropriate Ivanov-like inequality for the lower estimate of a new kind of entropy by means of the logarithm of asymptotic Nielsen numbers for the compositions of a one-parameter family of multivalued admissible maps. This inequality is then applied to impulsive differential equations on tori via the associated Poincaré translation operators along their trajectories. The obtained results generalize in a significant way those in our recent papers, especially in the one with the same title (whence the indication by II), into a multivalued setting. Another nontrivial generalization can be regarded with respect to their simple reduction into a “nonparametric” case.
Název v anglickém jazyce
Parametric topological entropy and differential equations with time-dependent impulses II: Multivalued case
Popis výsledku anglicky
The main aim of this article is to establish an effective criterion for a positive parametric topological entropy to differential equations with multivalued nonautonomous impulses on tori. The crucial tool for this goal consists in developing an appropriate Ivanov-like inequality for the lower estimate of a new kind of entropy by means of the logarithm of asymptotic Nielsen numbers for the compositions of a one-parameter family of multivalued admissible maps. This inequality is then applied to impulsive differential equations on tori via the associated Poincaré translation operators along their trajectories. The obtained results generalize in a significant way those in our recent papers, especially in the one with the same title (whence the indication by II), into a multivalued setting. Another nontrivial generalization can be regarded with respect to their simple reduction into a “nonparametric” case.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF DIFFERENTIAL EQUATIONS
ISSN
0022-0396
e-ISSN
1090-2732
Svazek periodika
367
Číslo periodika v rámci svazku
SEP
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
783-803
Kód UT WoS článku
001012285400001
EID výsledku v databázi Scopus
2-s2.0-85161027240