Directly decomposable ideals and congruence kernels of commutative semirings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603179" target="_blank" >RIV/61989592:15310/20:73603179 - isvavai.cz</a>
Výsledek na webu
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/2819" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/2819</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2020.2819" target="_blank" >10.18514/MMN.2020.2819</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Directly decomposable ideals and congruence kernels of commutative semirings
Popis výsledku v původním jazyce
As pointed out in the monographs [5, 6] on semirings, ideals play an important role despite the fact that they need not be congruence kernels as in the case of rings. Hence, having two commutative semirings S-1 and S-2, one can ask whether an ideal I of their direct product S = S-1 x S-2 can be expressed in the form I-1 x I-2 where I-j is an ideal of S-j for j = 1, 2. Of course, the converse is elementary, namely if I-j is an ideal of S-j for j = 1, 2 then I-1 x I-2 is an ideal of S-1 x S-2. Having a congruence Theta on a commutative semiring S, its 0-class is an ideal of S, but not every ideal is of this form. Hence, the lattice IdS of all ideals of S and the lattice KerS of all congruence kernels (i.e. 0-classes of congruences) of S need not be equal. Furthermore, we show that the mapping Theta bar right arrow [0]Theta need not be a homomorphism from ConS onto KerS. Moreover, the question arises when a congruence kernel of the direct product S-1 x S-2 of two commutative semirings can be expressed as a direct product of the corresponding kernels on the factors. In the paper we present necessary and sufficient conditions for such direct decompositions both for ideals and for congruence kernels of commutative semirings. We also provide sufficient conditions for varieties of commutative semirings to have directly decomposable kernels.
Název v anglickém jazyce
Directly decomposable ideals and congruence kernels of commutative semirings
Popis výsledku anglicky
As pointed out in the monographs [5, 6] on semirings, ideals play an important role despite the fact that they need not be congruence kernels as in the case of rings. Hence, having two commutative semirings S-1 and S-2, one can ask whether an ideal I of their direct product S = S-1 x S-2 can be expressed in the form I-1 x I-2 where I-j is an ideal of S-j for j = 1, 2. Of course, the converse is elementary, namely if I-j is an ideal of S-j for j = 1, 2 then I-1 x I-2 is an ideal of S-1 x S-2. Having a congruence Theta on a commutative semiring S, its 0-class is an ideal of S, but not every ideal is of this form. Hence, the lattice IdS of all ideals of S and the lattice KerS of all congruence kernels (i.e. 0-classes of congruences) of S need not be equal. Furthermore, we show that the mapping Theta bar right arrow [0]Theta need not be a homomorphism from ConS onto KerS. Moreover, the question arises when a congruence kernel of the direct product S-1 x S-2 of two commutative semirings can be expressed as a direct product of the corresponding kernels on the factors. In the paper we present necessary and sufficient conditions for such direct decompositions both for ideals and for congruence kernels of commutative semirings. We also provide sufficient conditions for varieties of commutative semirings to have directly decomposable kernels.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
HU - Maďarsko
Počet stran výsledku
13
Strana od-do
"113 "- 125
Kód UT WoS článku
000541509200008
EID výsledku v databázi Scopus
2-s2.0-85089540848