Chapter 8 - Interpretation of vibrational optical activity spectra of proteins
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603550" target="_blank" >RIV/61989592:15310/20:73603550 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333183436" target="_blank" >https://obd.upol.cz/id_publ/333183436</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-12-818610-7.00008-6" target="_blank" >10.1016/B978-0-12-818610-7.00008-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chapter 8 - Interpretation of vibrational optical activity spectra of proteins
Popis výsledku v původním jazyce
Methods of vibrational optical activity (VOA) traditionally include Raman optical activity and vibrational circular dichroism. They combine structural sensitivity of chiroptical spectroscopy with the richness of vibrational spectra. Different peptide and protein conformations usually provide quite distinct VOA patterns. For spectra interpretation, it is desirable to understand the underlying physical principles. Quantum-chemical simulations of spectral shapes can also be very helpful. At present, they are implemented in common software, usually within the density functional theory. However, simulations of VOA spectra of even small molecules may be complicated by interactions with the solvent and molecular flexibility. For large molecules, direct quantum-chemical methods can be combined with or replaced by molecular dynamic simulations or semiempirical approaches. We present several examples of calculations used for small and large systems, with a bias to our previous results. Nevertheless, we tried to document general possibilities of contemporary computational chemistry.
Název v anglickém jazyce
Chapter 8 - Interpretation of vibrational optical activity spectra of proteins
Popis výsledku anglicky
Methods of vibrational optical activity (VOA) traditionally include Raman optical activity and vibrational circular dichroism. They combine structural sensitivity of chiroptical spectroscopy with the richness of vibrational spectra. Different peptide and protein conformations usually provide quite distinct VOA patterns. For spectra interpretation, it is desirable to understand the underlying physical principles. Quantum-chemical simulations of spectral shapes can also be very helpful. At present, they are implemented in common software, usually within the density functional theory. However, simulations of VOA spectra of even small molecules may be complicated by interactions with the solvent and molecular flexibility. For large molecules, direct quantum-chemical methods can be combined with or replaced by molecular dynamic simulations or semiempirical approaches. We present several examples of calculations used for small and large systems, with a bias to our previous results. Nevertheless, we tried to document general possibilities of contemporary computational chemistry.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Vibrational Spectroscopy in Protein Research
ISBN
978-0-12-818610-7
Počet stran výsledku
29
Strana od-do
219-248
Počet stran knihy
608
Název nakladatele
Academic Press
Místo vydání
London
Kód UT WoS kapitoly
—