Effects of low oxygen annealing on the photoelectrochemical water splitting properties of alpha-Fe2O3
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603574" target="_blank" >RIV/61989592:15310/20:73603574 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/no/content/articlehtml/2020/ta/c9ta10358a" target="_blank" >https://pubs.rsc.org/no/content/articlehtml/2020/ta/c9ta10358a</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c9ta10358a" target="_blank" >10.1039/c9ta10358a</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Effects of low oxygen annealing on the photoelectrochemical water splitting properties of alpha-Fe2O3
Popis výsledku v původním jazyce
Photoelectrochemical (PEC) water splitting is a promising method for converting solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (alpha-Fe2O3) is one of the most attractive materials for highly efficient charge carrier generation and collection, due to its large specific surface area and shortened minority carrier diffusion length required to reach the surface. In the present work, PEC water splitting performance of alpha-Fe2O3 prepared by anodization of thin iron layers on FTO glass and subsequent annealing in a low O-2-Ar atmosphere with only 0.03% O-2 was investigated. The key finding is that annealing anodic nanostructures with a low oxygen concentration provides a strongly enhanced PEC performance compared with classical air annealing. The photocurrent of the former at 1.5 V vs. RHE results in 1.1 mA cm(-2), being 11 times higher than that of the latter. The enhancement of the PEC performance of alpha-Fe2O3 annealed in a low oxygen atmosphere can be attributed to the controlled morphology, Sn doping, and introduction of oxygen vacancies, which contribute to the enhancement of the hole flux from the photogenerated site to the reactive surface and additionally lead to an enhanced hole transfer at the interface between alpha-Fe2O3 and the electrolyte. From the obtained results, it is evident that low oxygen annealing is a surprisingly effective method of defect engineering and optimizing alpha-Fe2O3 electrodes for a maximized PEC water splitting performance.
Název v anglickém jazyce
Effects of low oxygen annealing on the photoelectrochemical water splitting properties of alpha-Fe2O3
Popis výsledku anglicky
Photoelectrochemical (PEC) water splitting is a promising method for converting solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (alpha-Fe2O3) is one of the most attractive materials for highly efficient charge carrier generation and collection, due to its large specific surface area and shortened minority carrier diffusion length required to reach the surface. In the present work, PEC water splitting performance of alpha-Fe2O3 prepared by anodization of thin iron layers on FTO glass and subsequent annealing in a low O-2-Ar atmosphere with only 0.03% O-2 was investigated. The key finding is that annealing anodic nanostructures with a low oxygen concentration provides a strongly enhanced PEC performance compared with classical air annealing. The photocurrent of the former at 1.5 V vs. RHE results in 1.1 mA cm(-2), being 11 times higher than that of the latter. The enhancement of the PEC performance of alpha-Fe2O3 annealed in a low oxygen atmosphere can be attributed to the controlled morphology, Sn doping, and introduction of oxygen vacancies, which contribute to the enhancement of the hole flux from the photogenerated site to the reactive surface and additionally lead to an enhanced hole transfer at the interface between alpha-Fe2O3 and the electrolyte. From the obtained results, it is evident that low oxygen annealing is a surprisingly effective method of defect engineering and optimizing alpha-Fe2O3 electrodes for a maximized PEC water splitting performance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Pokročilé hybridní nanostruktury pro aplikaci v obnovitelných zdrojích energie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Chemistry A
ISSN
2050-7488
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
1315-1325
Kód UT WoS článku
000508855700040
EID výsledku v databázi Scopus
2-s2.0-85078707623