Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effects of low oxygen annealing on the photoelectrochemical water splitting properties of alpha-Fe2O3

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73603574" target="_blank" >RIV/61989592:15310/20:73603574 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pubs.rsc.org/no/content/articlehtml/2020/ta/c9ta10358a" target="_blank" >https://pubs.rsc.org/no/content/articlehtml/2020/ta/c9ta10358a</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1039/c9ta10358a" target="_blank" >10.1039/c9ta10358a</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effects of low oxygen annealing on the photoelectrochemical water splitting properties of alpha-Fe2O3

  • Popis výsledku v původním jazyce

    Photoelectrochemical (PEC) water splitting is a promising method for converting solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (alpha-Fe2O3) is one of the most attractive materials for highly efficient charge carrier generation and collection, due to its large specific surface area and shortened minority carrier diffusion length required to reach the surface. In the present work, PEC water splitting performance of alpha-Fe2O3 prepared by anodization of thin iron layers on FTO glass and subsequent annealing in a low O-2-Ar atmosphere with only 0.03% O-2 was investigated. The key finding is that annealing anodic nanostructures with a low oxygen concentration provides a strongly enhanced PEC performance compared with classical air annealing. The photocurrent of the former at 1.5 V vs. RHE results in 1.1 mA cm(-2), being 11 times higher than that of the latter. The enhancement of the PEC performance of alpha-Fe2O3 annealed in a low oxygen atmosphere can be attributed to the controlled morphology, Sn doping, and introduction of oxygen vacancies, which contribute to the enhancement of the hole flux from the photogenerated site to the reactive surface and additionally lead to an enhanced hole transfer at the interface between alpha-Fe2O3 and the electrolyte. From the obtained results, it is evident that low oxygen annealing is a surprisingly effective method of defect engineering and optimizing alpha-Fe2O3 electrodes for a maximized PEC water splitting performance.

  • Název v anglickém jazyce

    Effects of low oxygen annealing on the photoelectrochemical water splitting properties of alpha-Fe2O3

  • Popis výsledku anglicky

    Photoelectrochemical (PEC) water splitting is a promising method for converting solar energy into chemical energy stored in the form of hydrogen. Nanostructured hematite (alpha-Fe2O3) is one of the most attractive materials for highly efficient charge carrier generation and collection, due to its large specific surface area and shortened minority carrier diffusion length required to reach the surface. In the present work, PEC water splitting performance of alpha-Fe2O3 prepared by anodization of thin iron layers on FTO glass and subsequent annealing in a low O-2-Ar atmosphere with only 0.03% O-2 was investigated. The key finding is that annealing anodic nanostructures with a low oxygen concentration provides a strongly enhanced PEC performance compared with classical air annealing. The photocurrent of the former at 1.5 V vs. RHE results in 1.1 mA cm(-2), being 11 times higher than that of the latter. The enhancement of the PEC performance of alpha-Fe2O3 annealed in a low oxygen atmosphere can be attributed to the controlled morphology, Sn doping, and introduction of oxygen vacancies, which contribute to the enhancement of the hole flux from the photogenerated site to the reactive surface and additionally lead to an enhanced hole transfer at the interface between alpha-Fe2O3 and the electrolyte. From the obtained results, it is evident that low oxygen annealing is a surprisingly effective method of defect engineering and optimizing alpha-Fe2O3 electrodes for a maximized PEC water splitting performance.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Pokročilé hybridní nanostruktury pro aplikaci v obnovitelných zdrojích energie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Chemistry A

  • ISSN

    2050-7488

  • e-ISSN

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    1315-1325

  • Kód UT WoS článku

    000508855700040

  • EID výsledku v databázi Scopus

    2-s2.0-85078707623