Geodesic mappings of spaces with affine connections onto generalized symmetric and Ricci-symmetric spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73604195" target="_blank" >RIV/61989592:15310/20:73604195 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26110/20:PU137842
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/8/9/1560/htm" target="_blank" >https://www.mdpi.com/2227-7390/8/9/1560/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math8091560" target="_blank" >10.3390/math8091560</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geodesic mappings of spaces with affine connections onto generalized symmetric and Ricci-symmetric spaces
Popis výsledku v původním jazyce
In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.
Název v anglickém jazyce
Geodesic mappings of spaces with affine connections onto generalized symmetric and Ricci-symmetric spaces
Popis výsledku anglicky
In the paper, we consider geodesic mappings of spaces with an affine connections onto generalized symmetric and Ricci-symmetric spaces. In particular, we studied in detail geodesic mappings of spaces with an affine connections onto 2-, 3-, andm- (Ricci-) symmetric spaces. These spaces play an important role in the General Theory of Relativity. The main results we obtained were generalized to a case of geodesic mappings of spaces with an affine connection onto (Ricci-) symmetric spaces. The main equations of the mappings were obtained as closed mixed systems of PDEs of the Cauchy type in covariant form. For the systems, we have found the maximum number of essential parameters which the solutions depend on. Anym- (Ricci-) symmetric spaces (m >= 1) are geodesically mapped onto many spaces with an affine connection. We can call these spacesprojectivelly m- (Ricci-) symmetric spacesand for them there exist above-mentioned nontrivial solutions.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1408" target="_blank" >LO1408: AdMaS UP - Pokročilé stavební materiály, konstrukce a technologie</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
"1560-1"-"1560-13"
Kód UT WoS článku
000580235200001
EID výsledku v databázi Scopus
2-s2.0-85091380515