Filters and congruences in sectionally pseudocomplemented lattices and posets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609273" target="_blank" >RIV/61989592:15310/21:73609273 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00500-021-05900-4" target="_blank" >https://link.springer.com/article/10.1007%2Fs00500-021-05900-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-021-05900-4" target="_blank" >10.1007/s00500-021-05900-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Filters and congruences in sectionally pseudocomplemented lattices and posets
Popis výsledku v původním jazyce
Together with J. Paseka we introduced so-called sectionally pseudocomplemented lattices and posets and illuminated their role in algebraic constructions. We believe that—similar to relatively pseudocomplemented lattices—these structures can serve as an algebraic semantics of certain intuitionistic logics. The aim of the present paper is to define congruences and filters in these structures, derive mutual relationships between them and describe basic properties of congruences in strongly sectionally pseudocomplemented posets. For the description of filters in both sectionally pseudocomplemented lattices and posets, we use the tools introduced by A. Ursini, i.e., ideal terms and the closedness with respect to them. It seems to be of some interest that a similar machinery can be applied also for strongly sectionally pseudocomplemented posets in spite of the fact that the corresponding ideal terms are not everywhere defined.
Název v anglickém jazyce
Filters and congruences in sectionally pseudocomplemented lattices and posets
Popis výsledku anglicky
Together with J. Paseka we introduced so-called sectionally pseudocomplemented lattices and posets and illuminated their role in algebraic constructions. We believe that—similar to relatively pseudocomplemented lattices—these structures can serve as an algebraic semantics of certain intuitionistic logics. The aim of the present paper is to define congruences and filters in these structures, derive mutual relationships between them and describe basic properties of congruences in strongly sectionally pseudocomplemented posets. For the description of filters in both sectionally pseudocomplemented lattices and posets, we use the tools introduced by A. Ursini, i.e., ideal terms and the closedness with respect to them. It seems to be of some interest that a similar machinery can be applied also for strongly sectionally pseudocomplemented posets in spite of the fact that the corresponding ideal terms are not everywhere defined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SOFT COMPUTING
ISSN
1432-7643
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"8827 "- 8837
Kód UT WoS článku
000660818600003
EID výsledku v databázi Scopus
2-s2.0-85107722924