Geographically Weighted Regression Analysis for Two-Factorial Compositional Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609682" target="_blank" >RIV/61989592:15310/21:73609682 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333189568" target="_blank" >https://obd.upol.cz/id_publ/333189568</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-71175-7_6" target="_blank" >10.1007/978-3-030-71175-7_6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geographically Weighted Regression Analysis for Two-Factorial Compositional Data
Popis výsledku v původním jazyce
The chapter focuses on the modelling and analysis of spatial dependent two-factorial compositional data. Spatial statistics provides a wide range of methods for the analysis of data with local variations but only a few of them are accommodated for the purposes of modelling relative structures. In this chapter, the geographically weighted regression model is introduced to analyse the relationship between the dependent variable and an explanatory variable reflecting a structure expressed in terms of a compositional table. The methodology is motivated by the problem of modelling local variations of the relationship between at-risk-of-poverty rates and the structure of the highest attained educational level in the German population aged 30–34. The real data study shows how information included in a compositional table and further expressed in real-valued coordinates can be highly valuable in selecting variables and prioritising them with respect to a research interest to facilitate the final interpretation of the model.
Název v anglickém jazyce
Geographically Weighted Regression Analysis for Two-Factorial Compositional Data
Popis výsledku anglicky
The chapter focuses on the modelling and analysis of spatial dependent two-factorial compositional data. Spatial statistics provides a wide range of methods for the analysis of data with local variations but only a few of them are accommodated for the purposes of modelling relative structures. In this chapter, the geographically weighted regression model is introduced to analyse the relationship between the dependent variable and an explanatory variable reflecting a structure expressed in terms of a compositional table. The methodology is motivated by the problem of modelling local variations of the relationship between at-risk-of-poverty rates and the structure of the highest attained educational level in the German population aged 30–34. The real data study shows how information included in a compositional table and further expressed in real-valued coordinates can be highly valuable in selecting variables and prioritising them with respect to a research interest to facilitate the final interpretation of the model.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-05432S" target="_blank" >GA18-05432S: Prostorová syntéza založená na pokročilých metodách geocomputation</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Compositional Data Analysis, Festschrift in Honour of Vera Pawlowsky-Glahn
ISBN
978-3-030-71174-0
Počet stran výsledku
22
Strana od-do
103-124
Počet stran knihy
404
Název nakladatele
Springer
Místo vydání
Cham
Kód UT WoS kapitoly
—