Comprehensive Interval-Induced Weights Allocation with Bipolar Preference in Multi-Criteria Evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73609822" target="_blank" >RIV/61989592:15310/21:73609822 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/9/16/2002/htm" target="_blank" >https://www.mdpi.com/2227-7390/9/16/2002/htm</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9162002" target="_blank" >10.3390/math9162002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comprehensive Interval-Induced Weights Allocation with Bipolar Preference in Multi-Criteria Evaluation
Popis výsledku v původním jazyce
Preferences-involved evaluation and decision making are the main research subjects in Yager's decision theory. When the involved bipolar preferences are concerned with interval information, some induced weights allocation and aggregation methods should be reanalyzed and redesigned. This work considers the multi-criteria evaluation situation in which originally only the interval-valued absolute importance of each criterion is available. Firstly, based on interval-valued importance, upper bounds, lower bounds, and the mean points of each, we used the basic unit monotonic function-based bipolar preference weights allocation method four times to generate weight vectors. A comprehensive weighting mechanism is proposed after considering the normalization of the given absolute importance information. The bipolar optimism-pessimism preference-based weights allocation will also be applied according to the magnitudes of entries of any given interval input vector. A similar comprehensive weighting mechanism is still performed. With the obtained weight vector for criteria, we adopt the weighted ordered weighted averaging allocation on a convex poset to organically consider both two types of interval-inducing information and propose a further comprehensive weights allocation mechanism. The detailed comprehensive evaluation procedures with a numerical example for education are presented to show that the proposed models are feasible and useful in interval, multi-criteria, and bipolar preferences-involved decisional environments.
Název v anglickém jazyce
Comprehensive Interval-Induced Weights Allocation with Bipolar Preference in Multi-Criteria Evaluation
Popis výsledku anglicky
Preferences-involved evaluation and decision making are the main research subjects in Yager's decision theory. When the involved bipolar preferences are concerned with interval information, some induced weights allocation and aggregation methods should be reanalyzed and redesigned. This work considers the multi-criteria evaluation situation in which originally only the interval-valued absolute importance of each criterion is available. Firstly, based on interval-valued importance, upper bounds, lower bounds, and the mean points of each, we used the basic unit monotonic function-based bipolar preference weights allocation method four times to generate weight vectors. A comprehensive weighting mechanism is proposed after considering the normalization of the given absolute importance information. The bipolar optimism-pessimism preference-based weights allocation will also be applied according to the magnitudes of entries of any given interval input vector. A similar comprehensive weighting mechanism is still performed. With the obtained weight vector for criteria, we adopt the weighted ordered weighted averaging allocation on a convex poset to organically consider both two types of interval-inducing information and propose a further comprehensive weights allocation mechanism. The detailed comprehensive evaluation procedures with a numerical example for education are presented to show that the proposed models are feasible and useful in interval, multi-criteria, and bipolar preferences-involved decisional environments.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
"002-1"-"2002-10"
Kód UT WoS článku
000689408200001
EID výsledku v databázi Scopus
2-s2.0-85113585519