Partial least squares regression with compositional response variables and covariates
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610054" target="_blank" >RIV/61989592:15310/21:73610054 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333189941" target="_blank" >https://obd.upol.cz/id_publ/333189941</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2020.1795813" target="_blank" >10.1080/02664763.2020.1795813</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Partial least squares regression with compositional response variables and covariates
Popis výsledku v původním jazyce
The common approach for regression analysis with compositional variables is to express compositions in log-ratio coordinates (coefficients) and then perform standard statistical processing in real space. Similar to working in real space, the problem is that the standard least squares regression fails when the number of parts of all compositional covariates is higher than the number of observations. The aim of this study is to analyze in detail the partial least squares (PLS) regression which can deal with this problem. In this paper, we focus on the PLS regression between more than one compositional response variable and more than one compositional covariate. First, we give the PLS regression model with log-ratio coordinates of compositional variables, then we express the PLS model directly in the simplex. We also prove that the PLS model is invariant under the change of coordinate system, such as the ilr coordinates with a different contrast matrix or the clr coefficients. Moreover, we give the estimation and inference for parameters in PLS model. Finally, the PLS model with clr coefficients is used to analyze the relationship between the chemical metabolites of Astragali Radix and the plasma metabolites of rat after giving Astragali Radix.
Název v anglickém jazyce
Partial least squares regression with compositional response variables and covariates
Popis výsledku anglicky
The common approach for regression analysis with compositional variables is to express compositions in log-ratio coordinates (coefficients) and then perform standard statistical processing in real space. Similar to working in real space, the problem is that the standard least squares regression fails when the number of parts of all compositional covariates is higher than the number of observations. The aim of this study is to analyze in detail the partial least squares (PLS) regression which can deal with this problem. In this paper, we focus on the PLS regression between more than one compositional response variable and more than one compositional covariate. First, we give the PLS regression model with log-ratio coordinates of compositional variables, then we express the PLS model directly in the simplex. We also prove that the PLS model is invariant under the change of coordinate system, such as the ilr coordinates with a different contrast matrix or the clr coefficients. Moreover, we give the estimation and inference for parameters in PLS model. Finally, the PLS model with clr coefficients is used to analyze the relationship between the chemical metabolites of Astragali Radix and the plasma metabolites of rat after giving Astragali Radix.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF APPLIED STATISTICS
ISSN
0266-4763
e-ISSN
—
Svazek periodika
48
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
20
Strana od-do
3130-3149
Kód UT WoS článku
000550960800001
EID výsledku v databázi Scopus
2-s2.0-85088389861