Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weighted pivot coordinates for partial least squares-based marker discovery in high-throughput compositional data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610091" target="_blank" >RIV/61989592:15310/21:73610091 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/full/10.1002/sam.11514" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/sam.11514</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/sam.11514" target="_blank" >10.1002/sam.11514</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weighted pivot coordinates for partial least squares-based marker discovery in high-throughput compositional data

  • Popis výsledku v původním jazyce

    High-throughput data representing large mixtures of chemical or biological signals are ordinarily produced in the molecular sciences. Given a number of samples, partial least squares (PLS) regression is a well-established statistical method to investigate associations between them and any continuous response variables of interest. However, technical artifacts generally make the raw signals not directly comparable between samples. Thus, data normalization is required before any meaningful scientific information can be drawn. This often allows to characterize the processed signals as compositional data where the relevant information is contained in the pairwise log-ratios between the components of the mixture. The (log-ratio) pivot coordinate approach facilitates the aggregation into single variables of the pairwise log-ratios of a component to all the remaining components. This simplifies interpretability and the investigation of their relative importance but, particularly in a high-dimensional context, the aggregated log-ratios can easily mix up information from different underlaying processes. In this context, we propose a weighting strategy for the construction of pivot coordinates for PLS regression which draws on the correlation between response variable and pairwise log-ratios. Using real and simulated data sets, we demonstrate that this proposal enhances the discovery of biological markers in high-throughput compositional data.

  • Název v anglickém jazyce

    Weighted pivot coordinates for partial least squares-based marker discovery in high-throughput compositional data

  • Popis výsledku anglicky

    High-throughput data representing large mixtures of chemical or biological signals are ordinarily produced in the molecular sciences. Given a number of samples, partial least squares (PLS) regression is a well-established statistical method to investigate associations between them and any continuous response variables of interest. However, technical artifacts generally make the raw signals not directly comparable between samples. Thus, data normalization is required before any meaningful scientific information can be drawn. This often allows to characterize the processed signals as compositional data where the relevant information is contained in the pairwise log-ratios between the components of the mixture. The (log-ratio) pivot coordinate approach facilitates the aggregation into single variables of the pairwise log-ratios of a component to all the remaining components. This simplifies interpretability and the investigation of their relative importance but, particularly in a high-dimensional context, the aggregated log-ratios can easily mix up information from different underlaying processes. In this context, we propose a weighting strategy for the construction of pivot coordinates for PLS regression which draws on the correlation between response variable and pairwise log-ratios. Using real and simulated data sets, we demonstrate that this proposal enhances the discovery of biological markers in high-throughput compositional data.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10103 - Statistics and probability

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-07155S" target="_blank" >GA19-07155S: Identifikace regulačních sítí kontrolujících vývoj osemení hrachu pomocí RNA sekvenování, proteinové a metabolomické analýzy.</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Statistical Analysis and Data Mining

  • ISSN

    1932-1864

  • e-ISSN

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    315-330

  • Kód UT WoS článku

    000651867400001

  • EID výsledku v databázi Scopus

    2-s2.0-85106329473