Selective pivot logratio coordinates for partial least squares discriminant analysis modelling with applications in metabolomics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619388" target="_blank" >RIV/61989592:15310/23:73619388 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00098892:_____/23:10157879 RIV/61989592:15640/23:73619388 RIV/61989592:15110/23:73619388
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1002/sta4.592" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/sta4.592</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/sta4.592" target="_blank" >10.1002/sta4.592</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selective pivot logratio coordinates for partial least squares discriminant analysis modelling with applications in metabolomics
Popis výsledku v původním jazyce
Data resulting from high-throughput biological experiments are frequently of relative nature. This implies that the most relevant information is on the shape of the data distribution over the biological features more than on the size of the measurements themselves. One well-established way to acknowledge this in statistical processing is through logratio analysis. In the current work, we introduce selective pivot logratio coordinates as a new type of orthonormal logratio coordinate representation for high-dimensional relative (a.k.a. compositional) data. This proposal is aimed to enhance the identification of biomarkers in the context of binary classification problems, which is a common setting of scientific studies in the field. These logratio coordinates are constructed so that the pivot coordinate representing a certain compositional part aggregates all pairwise logratios of that part to the rest but, unlike in the ordinary formulation, excludes those deviating from the main pattern. This novel coordinate system is embedded within a partial least squares discriminant analysis (PLS-DA) model for its practical application. Based on both synthetic and realworld metabolomic data sets, we demonstrate the enhanced performance of the novel approach when compared with other methods used in the area.
Název v anglickém jazyce
Selective pivot logratio coordinates for partial least squares discriminant analysis modelling with applications in metabolomics
Popis výsledku anglicky
Data resulting from high-throughput biological experiments are frequently of relative nature. This implies that the most relevant information is on the shape of the data distribution over the biological features more than on the size of the measurements themselves. One well-established way to acknowledge this in statistical processing is through logratio analysis. In the current work, we introduce selective pivot logratio coordinates as a new type of orthonormal logratio coordinate representation for high-dimensional relative (a.k.a. compositional) data. This proposal is aimed to enhance the identification of biomarkers in the context of binary classification problems, which is a common setting of scientific studies in the field. These logratio coordinates are constructed so that the pivot coordinate representing a certain compositional part aggregates all pairwise logratios of that part to the rest but, unlike in the ordinary formulation, excludes those deviating from the main pattern. This novel coordinate system is embedded within a partial least squares discriminant analysis (PLS-DA) model for its practical application. Based on both synthetic and realworld metabolomic data sets, we demonstrate the enhanced performance of the novel approach when compared with other methods used in the area.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/NU20-08-00367" target="_blank" >NU20-08-00367: Nové biomarkery dědičných metabolických poruch</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Stat
ISSN
2049-1573
e-ISSN
2049-1573
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
001013196600001
EID výsledku v databázi Scopus
2-s2.0-85163695944