Robust regression with compositional covariates including cellwise outliers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F21%3A73610085" target="_blank" >RIV/61989592:15310/21:73610085 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11634-021-00436-9" target="_blank" >https://link.springer.com/article/10.1007/s11634-021-00436-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11634-021-00436-9" target="_blank" >10.1007/s11634-021-00436-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust regression with compositional covariates including cellwise outliers
Popis výsledku v původním jazyce
We propose a robust procedure to estimate a linear regression model with compositional and real-valued explanatory variables. The proposed procedure is designed to be robust against individual outlying cells in the data matrix (cellwise outliers), as well as entire outlying observations (rowwise outliers). Cellwise outliers are first filtered and then imputed by robust estimates. Afterwards, rowwise robust compositional regression is performed to obtain model coefficient estimates. Simulations show that the procedure generally outperforms a traditional rowwise-only robust regression method (MM-estimator). Moreover, our procedure yields better or comparable results to recently proposed cellwise robust regression methods (shooting S-estimator, 3-step regression) while it is preferable for interpretation through the use of appropriate coordinate systems for compositional data. An application to bio-environmental data reveals that the proposed procedure—compared to other regression methods—leads to conclusions that are best aligned with established scientific knowledge.
Název v anglickém jazyce
Robust regression with compositional covariates including cellwise outliers
Popis výsledku anglicky
We propose a robust procedure to estimate a linear regression model with compositional and real-valued explanatory variables. The proposed procedure is designed to be robust against individual outlying cells in the data matrix (cellwise outliers), as well as entire outlying observations (rowwise outliers). Cellwise outliers are first filtered and then imputed by robust estimates. Afterwards, rowwise robust compositional regression is performed to obtain model coefficient estimates. Simulations show that the procedure generally outperforms a traditional rowwise-only robust regression method (MM-estimator). Moreover, our procedure yields better or comparable results to recently proposed cellwise robust regression methods (shooting S-estimator, 3-step regression) while it is preferable for interpretation through the use of appropriate coordinate systems for compositional data. An application to bio-environmental data reveals that the proposed procedure—compared to other regression methods—leads to conclusions that are best aligned with established scientific knowledge.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-07155S" target="_blank" >GA19-07155S: Identifikace regulačních sítí kontrolujících vývoj osemení hrachu pomocí RNA sekvenování, proteinové a metabolomické analýzy.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Data Analysis and Classification
ISSN
1862-5347
e-ISSN
—
Svazek periodika
2021
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
41
Strana od-do
869-909
Kód UT WoS článku
000621244900001
EID výsledku v databázi Scopus
2-s2.0-85101504633