Imputation of missing values for compositional data using classical and robust methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10211954" target="_blank" >RIV/61989592:15310/10:10211954 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.csda.2009.11.023" target="_blank" >http://dx.doi.org/10.1016/j.csda.2009.11.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2009.11.023" target="_blank" >10.1016/j.csda.2009.11.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Imputation of missing values for compositional data using classical and robust methods
Popis výsledku v původním jazyce
New imputation algorithms for estimating missing values in compositional data are introduced. A first proposal uses the k-nearest neighbor procedure based on the Aitchison distance, a distance measure especially designed for compositional data. It is important to adjust the estimated missing values to the overall size of the compositional parts of the neighbors. As a second proposal an iterative model-based imputation technique is introduced which initially starts from the result of the proposed k-nearest neighbor procedure. The method is based on iterative regressions, thereby accounting for the whole multivariate data information. The regressions have to be performed in a transformed space, and depending on the data quality classical or robust regression techniques can be employed. The proposed methods are tested on a real and on simulated data sets. In the presence of outliers, the model-based method with robust regressions is preferable.
Název v anglickém jazyce
Imputation of missing values for compositional data using classical and robust methods
Popis výsledku anglicky
New imputation algorithms for estimating missing values in compositional data are introduced. A first proposal uses the k-nearest neighbor procedure based on the Aitchison distance, a distance measure especially designed for compositional data. It is important to adjust the estimated missing values to the overall size of the compositional parts of the neighbors. As a second proposal an iterative model-based imputation technique is introduced which initially starts from the result of the proposed k-nearest neighbor procedure. The method is based on iterative regressions, thereby accounting for the whole multivariate data information. The regressions have to be performed in a transformed space, and depending on the data quality classical or robust regression techniques can be employed. The proposed methods are tested on a real and on simulated data sets. In the presence of outliers, the model-based method with robust regressions is preferable.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics & Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
3095-3107
Kód UT WoS článku
000281333900018
EID výsledku v databázi Scopus
—