Infilling missing rainfall and runoff data for Sarawak, Malaysia using gaussian mixture model based K-nearest neighbor imputation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F19%3A50015951" target="_blank" >RIV/62690094:18450/19:50015951 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-030-22999-3_3" target="_blank" >http://dx.doi.org/10.1007/978-3-030-22999-3_3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-22999-3_3" target="_blank" >10.1007/978-3-030-22999-3_3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Infilling missing rainfall and runoff data for Sarawak, Malaysia using gaussian mixture model based K-nearest neighbor imputation
Popis výsledku v původním jazyce
Hydrologists are often encountered problem of missing values in a rainfall and runoff database. They tend to use the normal ratio or distance power method to deal with the problem of missing data in the rainfall and runoff database. However, this method is time consuming and most of the time, it is less accurate. In this paper, two neighbor-based imputation methods namely K-nearest neighbor (KNN) and Gaussian mixture model based KNN imputation (GMM-KNN) were explored for gap filling the missing rainfall and runoff database. Different percentage of missing data entries were inserted randomly into the database such as 2%, 5%, 10%, 15% and 20% of missing data. Pros and cons of these two methods were compared and discussed. The selected study area is Bedup Basin, located at Samarahan Division, Sarawak, East Malaysia. It is observed that the GMM-KNN imputation method results in the best estimation accuracy for the missing rainfall and runoff database.
Název v anglickém jazyce
Infilling missing rainfall and runoff data for Sarawak, Malaysia using gaussian mixture model based K-nearest neighbor imputation
Popis výsledku anglicky
Hydrologists are often encountered problem of missing values in a rainfall and runoff database. They tend to use the normal ratio or distance power method to deal with the problem of missing data in the rainfall and runoff database. However, this method is time consuming and most of the time, it is less accurate. In this paper, two neighbor-based imputation methods namely K-nearest neighbor (KNN) and Gaussian mixture model based KNN imputation (GMM-KNN) were explored for gap filling the missing rainfall and runoff database. Different percentage of missing data entries were inserted randomly into the database such as 2%, 5%, 10%, 15% and 20% of missing data. Pros and cons of these two methods were compared and discussed. The selected study area is Bedup Basin, located at Samarahan Division, Sarawak, East Malaysia. It is observed that the GMM-KNN imputation method results in the best estimation accuracy for the missing rainfall and runoff database.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN
978-3-030-22998-6
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
12
Strana od-do
27-38
Název nakladatele
Springer Verlag
Místo vydání
Berlin
Místo konání akce
Gratz
Datum konání akce
9. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—