Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73609816" target="_blank" >RIV/61989592:15310/22:73609816 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/epdf/10.1002/int.22751" target="_blank" >https://onlinelibrary.wiley.com/doi/epdf/10.1002/int.22751</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/int.22751" target="_blank" >10.1002/int.22751</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process
Popis výsledku v původním jazyce
In the creation of better multiple attribute decision-making (MADM) patterns to address the ambiguity in the expanding sophisticated of expert systems, the hypothesis of interval-valued intuitionistic fuzzy sets has proven to be an effective and advantageous technique. We employ Aczel-Alsina operations to remedy the MADM issue, wherein all data supplied by decision-makers is conveyed as interval-valued intuitionistic fuzzy (IVIF) decision matrices with all components described by an IVIF number (IVIFN). This allows us to satisfy much more demands from fuzzy decision-making concerns (IVIFN). In the framework of IVIFNs, we primarily describe several novel Aczel-Alsina operations. On the basis of these operations, we construct several novel IVIF aggregation operators, such as the IVIF Aczel-Alsina weighted averaging operator, the IVIF Aczel-Alsina order weighted averaging operator, and IVIF Aczel-Alsina hybrid averaging operator. We built up several features of such operators. We recommend an MADM technique dependent on the advanced IVIF aggregation operators. To demonstrate the effectiveness of the developed technique, we present an overview of research scientist selection. The experimental results show the viability and benefits of the created strategy by contrasting it with the different strategies. This paper reveals that some existing IVIF aggregation operators are particular instances of the operators induced in this paper.
Název v anglickém jazyce
Novel Aczel-Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process
Popis výsledku anglicky
In the creation of better multiple attribute decision-making (MADM) patterns to address the ambiguity in the expanding sophisticated of expert systems, the hypothesis of interval-valued intuitionistic fuzzy sets has proven to be an effective and advantageous technique. We employ Aczel-Alsina operations to remedy the MADM issue, wherein all data supplied by decision-makers is conveyed as interval-valued intuitionistic fuzzy (IVIF) decision matrices with all components described by an IVIF number (IVIFN). This allows us to satisfy much more demands from fuzzy decision-making concerns (IVIFN). In the framework of IVIFNs, we primarily describe several novel Aczel-Alsina operations. On the basis of these operations, we construct several novel IVIF aggregation operators, such as the IVIF Aczel-Alsina weighted averaging operator, the IVIF Aczel-Alsina order weighted averaging operator, and IVIF Aczel-Alsina hybrid averaging operator. We built up several features of such operators. We recommend an MADM technique dependent on the advanced IVIF aggregation operators. To demonstrate the effectiveness of the developed technique, we present an overview of research scientist selection. The experimental results show the viability and benefits of the created strategy by contrasting it with the different strategies. This paper reveals that some existing IVIF aggregation operators are particular instances of the operators induced in this paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
ISSN
0884-8173
e-ISSN
1098-111X
Svazek periodika
37
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
5059-5081
Kód UT WoS článku
000723610700001
EID výsledku v databázi Scopus
2-s2.0-85120156182