Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73617149" target="_blank" >RIV/61989592:15310/23:73617149 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s12652-022-04360-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot" target="_blank" >https://link.springer.com/article/10.1007/s12652-022-04360-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12652-022-04360-4" target="_blank" >10.1007/s12652-022-04360-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators
Popis výsledku v původním jazyce
A useful expansion of the intuitionistic fuzzy set (IFS) for dealing with ambiguities in information is the Pythagorean fuzzy set (PFS), which is one of the most frequently used fuzzy sets in data science. Due to these circumstances, the Aczel-Alsina operations are used in this study to formulate several Pythagorean fuzzy (PF) Aczel-Alsina aggregation operators, which include the PF Aczel-Alsina weighted average (PFAAWA) operator, PF Aczel-Alsina order weighted average (PFAAOWA) operator, and PF Aczel-Alsina hybrid average (PFAAHA) operator. The distinguishing characteristics of these potential operators are studied in detail. The primary advantage of using an advanced operator is that it provides decision-makers with a more comprehensive understanding of the situation. If we compare the results of this study to those of prior strategies, we can see that the approach proposed in this study is more thorough, more precise, and more concrete. As a result, this technique makes a significant contribution to the solution of real-world problems. Eventually, the suggested operator is put into practise in order to overcome the issues related to multi-attribute decision-making under the PF data environment. A numerical example has been used to show that the suggested method is valid, useful, and effective.
Název v anglickém jazyce
Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators
Popis výsledku anglicky
A useful expansion of the intuitionistic fuzzy set (IFS) for dealing with ambiguities in information is the Pythagorean fuzzy set (PFS), which is one of the most frequently used fuzzy sets in data science. Due to these circumstances, the Aczel-Alsina operations are used in this study to formulate several Pythagorean fuzzy (PF) Aczel-Alsina aggregation operators, which include the PF Aczel-Alsina weighted average (PFAAWA) operator, PF Aczel-Alsina order weighted average (PFAAOWA) operator, and PF Aczel-Alsina hybrid average (PFAAHA) operator. The distinguishing characteristics of these potential operators are studied in detail. The primary advantage of using an advanced operator is that it provides decision-makers with a more comprehensive understanding of the situation. If we compare the results of this study to those of prior strategies, we can see that the approach proposed in this study is more thorough, more precise, and more concrete. As a result, this technique makes a significant contribution to the solution of real-world problems. Eventually, the suggested operator is put into practise in order to overcome the issues related to multi-attribute decision-making under the PF data environment. A numerical example has been used to show that the suggested method is valid, useful, and effective.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Ambient Intelligence and Humanized Computing
ISSN
1868-5137
e-ISSN
1868-5145
Svazek periodika
14
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
10931-10945
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85135832412