Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73617149" target="_blank" >RIV/61989592:15310/23:73617149 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s12652-022-04360-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot" target="_blank" >https://link.springer.com/article/10.1007/s12652-022-04360-4?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s12652-022-04360-4" target="_blank" >10.1007/s12652-022-04360-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators

  • Popis výsledku v původním jazyce

    A useful expansion of the intuitionistic fuzzy set (IFS) for dealing with ambiguities in information is the Pythagorean fuzzy set (PFS), which is one of the most frequently used fuzzy sets in data science. Due to these circumstances, the Aczel-Alsina operations are used in this study to formulate several Pythagorean fuzzy (PF) Aczel-Alsina aggregation operators, which include the PF Aczel-Alsina weighted average (PFAAWA) operator, PF Aczel-Alsina order weighted average (PFAAOWA) operator, and PF Aczel-Alsina hybrid average (PFAAHA) operator. The distinguishing characteristics of these potential operators are studied in detail. The primary advantage of using an advanced operator is that it provides decision-makers with a more comprehensive understanding of the situation. If we compare the results of this study to those of prior strategies, we can see that the approach proposed in this study is more thorough, more precise, and more concrete. As a result, this technique makes a significant contribution to the solution of real-world problems. Eventually, the suggested operator is put into practise in order to overcome the issues related to multi-attribute decision-making under the PF data environment. A numerical example has been used to show that the suggested method is valid, useful, and effective.

  • Název v anglickém jazyce

    Multiple attribute decision making based on Pythagorean fuzzy Aczel-Alsina average aggregation operators

  • Popis výsledku anglicky

    A useful expansion of the intuitionistic fuzzy set (IFS) for dealing with ambiguities in information is the Pythagorean fuzzy set (PFS), which is one of the most frequently used fuzzy sets in data science. Due to these circumstances, the Aczel-Alsina operations are used in this study to formulate several Pythagorean fuzzy (PF) Aczel-Alsina aggregation operators, which include the PF Aczel-Alsina weighted average (PFAAWA) operator, PF Aczel-Alsina order weighted average (PFAAOWA) operator, and PF Aczel-Alsina hybrid average (PFAAHA) operator. The distinguishing characteristics of these potential operators are studied in detail. The primary advantage of using an advanced operator is that it provides decision-makers with a more comprehensive understanding of the situation. If we compare the results of this study to those of prior strategies, we can see that the approach proposed in this study is more thorough, more precise, and more concrete. As a result, this technique makes a significant contribution to the solution of real-world problems. Eventually, the suggested operator is put into practise in order to overcome the issues related to multi-attribute decision-making under the PF data environment. A numerical example has been used to show that the suggested method is valid, useful, and effective.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Ambient Intelligence and Humanized Computing

  • ISSN

    1868-5137

  • e-ISSN

    1868-5145

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    15

  • Strana od-do

    10931-10945

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85135832412