Integrated MADM approach based on extended MABAC method with Aczel-Alsina generalized weighted Bonferroni mean operator
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021917" target="_blank" >RIV/62690094:18450/24:50021917 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007/s10462-024-10980-3.pdf?utm_source=scopus&getft_integrator=scopus" target="_blank" >https://link.springer.com/content/pdf/10.1007/s10462-024-10980-3.pdf?utm_source=scopus&getft_integrator=scopus</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10462-024-10980-3" target="_blank" >10.1007/s10462-024-10980-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Integrated MADM approach based on extended MABAC method with Aczel-Alsina generalized weighted Bonferroni mean operator
Popis výsledku v původním jazyce
Currently, q-rung orthopair (q-ROF) set theory is one of the most effective set theories in dealing uncertainty associated with imprecise information. In complex decision-making problems, input variables can be described by q-ROF numbers to cope ambiguity. While, generalized weighted Bonferroni mean (GWBM) operator can reflect correlation among input arguments. Aczel–Alsina operations underline fair and accurate evaluation of decision-makers. Harnessing these benefits, a pioneering extension of the GWBM operator based on Aczel–Alsina operations is introduced. Simultaneously, a novel generalized distance measure is crafted, drawing inspiration from Dice and Jaccard similarities. Beside these, using stepwise weight assessment ratio analysis (SWARA) and multi-attribute border approximation area comparison (MABAC) methods, this study pioneers an integrated method, q-ROF-SWARA-MABAC for assessing and prioritizing factors and alternatives on q-ROF environment. Later, with the suggested model, a case study on high-speed rail corridor (HSRC) for India is solved, revealing Varanasi-Howrah HSRC as the most preferable choice. Moving forward, detailed sensitive analysis of suggested model is performed to explore the pertinence and supremacy. Eventually, the outcomes manifest that novel framework is flexible, reliable, accurate and could be viable option to consider for future use. © The Author(s) 2024.
Název v anglickém jazyce
Integrated MADM approach based on extended MABAC method with Aczel-Alsina generalized weighted Bonferroni mean operator
Popis výsledku anglicky
Currently, q-rung orthopair (q-ROF) set theory is one of the most effective set theories in dealing uncertainty associated with imprecise information. In complex decision-making problems, input variables can be described by q-ROF numbers to cope ambiguity. While, generalized weighted Bonferroni mean (GWBM) operator can reflect correlation among input arguments. Aczel–Alsina operations underline fair and accurate evaluation of decision-makers. Harnessing these benefits, a pioneering extension of the GWBM operator based on Aczel–Alsina operations is introduced. Simultaneously, a novel generalized distance measure is crafted, drawing inspiration from Dice and Jaccard similarities. Beside these, using stepwise weight assessment ratio analysis (SWARA) and multi-attribute border approximation area comparison (MABAC) methods, this study pioneers an integrated method, q-ROF-SWARA-MABAC for assessing and prioritizing factors and alternatives on q-ROF environment. Later, with the suggested model, a case study on high-speed rail corridor (HSRC) for India is solved, revealing Varanasi-Howrah HSRC as the most preferable choice. Moving forward, detailed sensitive analysis of suggested model is performed to explore the pertinence and supremacy. Eventually, the outcomes manifest that novel framework is flexible, reliable, accurate and could be viable option to consider for future use. © The Author(s) 2024.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Artificial Intelligence Review
ISSN
0269-2821
e-ISSN
1573-7462
Svazek periodika
58
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
45
Strana od-do
"Article number: 27"
Kód UT WoS článku
001365464200002
EID výsledku v databázi Scopus
2-s2.0-85210527627