Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73612504" target="_blank" >RIV/61989592:15310/22:73612504 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S096007792200011X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S096007792200011X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2022.111800" target="_blank" >10.1016/j.chaos.2022.111800</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition
Popis výsledku v původním jazyce
The impulsive differential equations are examined via the associated Poincaré translation operators in terms of topological entropy. The crucial role is played by the entropy analysis of the compositions of Poincaré’s operators with the impulsive maps. For the scalar (one-dimensional) problems, the lower entropy estimations can be effectively obtained by means of horseshoes. For the vector (higher-dimensional) problems, the situation becomes more delicate and requires rather sophisticated techniques. Five main theorems are presented about a positive topological entropy (i.e. topological chaos) for given impulsive problems. For vector linear homogeneous differential equations with constant coefficients and isometric impulses, the zero entropy is deduced under commutativity restrictions imposed on the components of a mentioned composition. Several illustrative examples and numerical simulations are supplied.
Název v anglickém jazyce
Topological entropy of composition and impulsive differential equations satisfying a uniqueness condition
Popis výsledku anglicky
The impulsive differential equations are examined via the associated Poincaré translation operators in terms of topological entropy. The crucial role is played by the entropy analysis of the compositions of Poincaré’s operators with the impulsive maps. For the scalar (one-dimensional) problems, the lower entropy estimations can be effectively obtained by means of horseshoes. For the vector (higher-dimensional) problems, the situation becomes more delicate and requires rather sophisticated techniques. Five main theorems are presented about a positive topological entropy (i.e. topological chaos) for given impulsive problems. For vector linear homogeneous differential equations with constant coefficients and isometric impulses, the zero entropy is deduced under commutativity restrictions imposed on the components of a mentioned composition. Several illustrative examples and numerical simulations are supplied.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CHAOS SOLITONS & FRACTALS
ISSN
0960-0779
e-ISSN
1873-2887
Svazek periodika
156
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
"111800-1"-"111800-11"
Kód UT WoS článku
000783081700004
EID výsledku v databázi Scopus
2-s2.0-85122707699