Modelling the driving speed on expressway ramps based on floating car data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73614893" target="_blank" >RIV/61989592:15310/22:73614893 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44994575:_____/22:N0000046
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0263224122002676" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0263224122002676</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.measurement.2022.110995" target="_blank" >10.1016/j.measurement.2022.110995</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling the driving speed on expressway ramps based on floating car data
Popis výsledku v původním jazyce
Driving speed is one of the key concepts and risk factors in transportation research. The insights into operational and safety aspects of driving can be provided by floating car data (FCD), collecting information about speed, position and time by vehicles themselves. FCD are often recorded at high frequency, representing a continuous phenomenon. As such, convenient approach can be functional data analysis (FDA). Speed trajectories are investigated, identifying sections with rapid changes of speed and sections where drives in central and auxiliary lanes cannot be distinguished in terms of their speed. The effect of curvature and auxiliary lanes on driving speed was shown by functional regression models. Significant influence of road shape on speed was found for ramps with complex shape. The accuracy of regression models was assessed by RMSE, NRMSE, and precision of estimators by point-wise confidence intervals. The analysis was performed on an expressway interchange in Brno, Czech Republic.
Název v anglickém jazyce
Modelling the driving speed on expressway ramps based on floating car data
Popis výsledku anglicky
Driving speed is one of the key concepts and risk factors in transportation research. The insights into operational and safety aspects of driving can be provided by floating car data (FCD), collecting information about speed, position and time by vehicles themselves. FCD are often recorded at high frequency, representing a continuous phenomenon. As such, convenient approach can be functional data analysis (FDA). Speed trajectories are investigated, identifying sections with rapid changes of speed and sections where drives in central and auxiliary lanes cannot be distinguished in terms of their speed. The effect of curvature and auxiliary lanes on driving speed was shown by functional regression models. Significant influence of road shape on speed was found for ramps with complex shape. The accuracy of regression models was assessed by RMSE, NRMSE, and precision of estimators by point-wise confidence intervals. The analysis was performed on an expressway interchange in Brno, Czech Republic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MEASUREMENT
ISSN
0263-2241
e-ISSN
1873-412X
Svazek periodika
195
Číslo periodika v rámci svazku
MAY
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
"110995-1"-"110995-16"
Kód UT WoS článku
000793611500001
EID výsledku v databázi Scopus
2-s2.0-85128193433