Boolean Matrix Factorization for Data with Symmetric Variables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73615102" target="_blank" >RIV/61989592:15310/22:73615102 - isvavai.cz</a>
Výsledek na webu
<a href="https://obd.upol.cz/id_publ/333194989" target="_blank" >https://obd.upol.cz/id_publ/333194989</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICDM54844.2022.00123" target="_blank" >10.1109/ICDM54844.2022.00123</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boolean Matrix Factorization for Data with Symmetric Variables
Popis výsledku v původním jazyce
Boolean matrix factorization (BMF), a popular methodology of preprocessing and analyzing 1/0 tabular data, generally handles 0s and 1s differently. It aims to explain 1s in the data by factors, while 0s are just left unexplained. This difference is mainly given by the usual data character, where 1s carry much more important information (and are much scarcer) than 0s. However, in some datasets, the 1s and 0s are equally important. Such datasets require symmetrical handling of 1s and 0s. We propose a novel factorization of such data and its algorithm. Unlike usual BMF methods, factors are linearly ordered by priority in our factorization, and factors can contradict each other – meaning that one factor can put 1 where the other puts 0. In such a case, the factor with higher priority is right. We show that the proposed factorization provides a more compact data description than a straightforward application of the usual BMF methods.
Název v anglickém jazyce
Boolean Matrix Factorization for Data with Symmetric Variables
Popis výsledku anglicky
Boolean matrix factorization (BMF), a popular methodology of preprocessing and analyzing 1/0 tabular data, generally handles 0s and 1s differently. It aims to explain 1s in the data by factors, while 0s are just left unexplained. This difference is mainly given by the usual data character, where 1s carry much more important information (and are much scarcer) than 0s. However, in some datasets, the 1s and 0s are equally important. Such datasets require symmetrical handling of 1s and 0s. We propose a novel factorization of such data and its algorithm. Unlike usual BMF methods, factors are linearly ordered by priority in our factorization, and factors can contradict each other – meaning that one factor can put 1 where the other puts 0. In such a case, the factor with higher priority is right. We show that the proposed factorization provides a more compact data description than a straightforward application of the usual BMF methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE International Conference on Data Mining (ICDM)
ISBN
978-1-66545-099-7
ISSN
1550-4786
e-ISSN
2374-8486
Počet stran výsledku
6
Strana od-do
1011-1016
Název nakladatele
The Institute of Electrical and Electronics Engineers
Místo vydání
Piscataway
Místo konání akce
Orlando, Florida
Datum konání akce
28. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—