Boolean matrix factorization for symmetric binary variables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73620751" target="_blank" >RIV/61989592:15310/23:73620751 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0950705123006949" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0950705123006949</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2023.110944" target="_blank" >10.1016/j.knosys.2023.110944</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boolean matrix factorization for symmetric binary variables
Popis výsledku v původním jazyce
Binary variables classify into two types: asymmetric variables, where one state (1 or 0) is significantly more valuable than the other, and symmetric variables, where both states are equally valuable. Boolean matrix factorization (BMF), a popular methodology of preprocessing and analyzing tabular binary data, handles its input as asymmetric variables. In the paper, we develop an alternative that handles Boolean matrices as symmetric variables. Our method differs from traditional BMF in that the factors are linearly ordered by priority, and factors can contradict each other, meaning that one factor can assign a value of 1 while the other assigns a value of 0. In such a case, the factor with higher priority is the relevant one. Through experiments, we demonstrate that our approach provides a more compact data description than a straightforward application of the traditional BMF methods. Moreover, it is even able to overcome the Schein rank.
Název v anglickém jazyce
Boolean matrix factorization for symmetric binary variables
Popis výsledku anglicky
Binary variables classify into two types: asymmetric variables, where one state (1 or 0) is significantly more valuable than the other, and symmetric variables, where both states are equally valuable. Boolean matrix factorization (BMF), a popular methodology of preprocessing and analyzing tabular binary data, handles its input as asymmetric variables. In the paper, we develop an alternative that handles Boolean matrices as symmetric variables. Our method differs from traditional BMF in that the factors are linearly ordered by priority, and factors can contradict each other, meaning that one factor can assign a value of 1 while the other assigns a value of 0. In such a case, the factor with higher priority is the relevant one. Through experiments, we demonstrate that our approach provides a more compact data description than a straightforward application of the traditional BMF methods. Moreover, it is even able to overcome the Schein rank.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
KNOWLEDGE-BASED SYSTEMS
ISSN
0950-7051
e-ISSN
1872-7409
Svazek periodika
279
Číslo periodika v rámci svazku
NOV
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
"110944-1"-"110944-15"
Kód UT WoS článku
001080411500001
EID výsledku v databázi Scopus
2-s2.0-85170406410