A Comparative study of two methodologies for large binary datasets analysis.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F12%3A00387233" target="_blank" >RIV/67985807:_____/12:00387233 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comparative study of two methodologies for large binary datasets analysis.
Popis výsledku v původním jazyce
Studied are differences of two approaches targeted to reveal latent variables in binary data. These approaches assume that the observed high dimensional data are driven by a small number of hidden binary sources combined due to Boolean superposition. Thefirst approach is the Boolean matrix factorization (BMF) and the second one is the Boolean factor analysis (BFA). The two BMF methods are used for comparison. First is the M8 method from the BMDP statistical software package and the second one is the method suggested by Belohlavek & Vychodil. These two are compared to BFA, especially with the Expectation-maximization Boolean Factor Analysis we had developed earlier has, however, been extended with a binarization step developed here. The well-known bars problem and the mushroom dataset are used for revealing the methods' peculiarities. In particular, the reconstruction ability of the computed factors and the information gain as the measure of dimension reduction was under scrutiny. It
Název v anglickém jazyce
A Comparative study of two methodologies for large binary datasets analysis.
Popis výsledku anglicky
Studied are differences of two approaches targeted to reveal latent variables in binary data. These approaches assume that the observed high dimensional data are driven by a small number of hidden binary sources combined due to Boolean superposition. Thefirst approach is the Boolean matrix factorization (BMF) and the second one is the Boolean factor analysis (BFA). The two BMF methods are used for comparison. First is the M8 method from the BMDP statistical software package and the second one is the method suggested by Belohlavek & Vychodil. These two are compared to BFA, especially with the Expectation-maximization Boolean Factor Analysis we had developed earlier has, however, been extended with a binarization step developed here. The well-known bars problem and the mushroom dataset are used for revealing the methods' peculiarities. In particular, the reconstruction ability of the computed factors and the information gain as the measure of dimension reduction was under scrutiny. It
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Rozklady matic s binárními a ordinálními daty: teorie, algoritmy, složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
18
Strana od-do
565-582
Kód UT WoS článku
000314321300006
EID výsledku v databázi Scopus
—