Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616931" target="_blank" >RIV/61989592:15310/22:73616931 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S016501142200063X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016501142200063X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.02.013" target="_blank" >10.1016/j.fss.2022.02.013</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval
Popis výsledku v původním jazyce
In numerous generalizations of the original theory of fuzzy sets proposed by Zadeh, the considered membership degrees are often taken from lattices isomorphic to the lattice LI of closed subintervals of the unit interval [0, 1]. This is, for example, the case of intuitionistic values, Pythagorean values or q-rung orthopair values. The mentioned isomorphisms allow to transfer the results obtained for the lattice LI directly to the other mentioned lattices. In particular, basic connectives in Zadeh's fuzzy set theory, i.e., special functions on the lattice [0, 1], can be extended to the interval-valued connectives, i.e., to special functions on the lattice LI , and then to the connectives on the lattices L* of intuitionistic values, P of Pythagorean values, and also on the lattice L tau q of q-rung orthopair values. We give several examples of such connectives, in particular, of those which are related to strict t-norms. For all these connectives we show their link to an additive generator f of the considered strict t-norm T. Based on our approach, many results discussed in numerous papers can be treated in a unique framework, and the same is valid for possible newly proposed types of connectives based on strict t-norms. Due to this approach, a lot of tedious proofs of the properties of the proposed connectives could be avoided, which gives researchers more space for presented applications.
Název v anglickém jazyce
Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval
Popis výsledku anglicky
In numerous generalizations of the original theory of fuzzy sets proposed by Zadeh, the considered membership degrees are often taken from lattices isomorphic to the lattice LI of closed subintervals of the unit interval [0, 1]. This is, for example, the case of intuitionistic values, Pythagorean values or q-rung orthopair values. The mentioned isomorphisms allow to transfer the results obtained for the lattice LI directly to the other mentioned lattices. In particular, basic connectives in Zadeh's fuzzy set theory, i.e., special functions on the lattice [0, 1], can be extended to the interval-valued connectives, i.e., to special functions on the lattice LI , and then to the connectives on the lattices L* of intuitionistic values, P of Pythagorean values, and also on the lattice L tau q of q-rung orthopair values. We give several examples of such connectives, in particular, of those which are related to strict t-norms. For all these connectives we show their link to an additive generator f of the considered strict t-norm T. Based on our approach, many results discussed in numerous papers can be treated in a unique framework, and the same is valid for possible newly proposed types of connectives based on strict t-norms. Due to this approach, a lot of tedious proofs of the properties of the proposed connectives could be avoided, which gives researchers more space for presented applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
1872-6801
Svazek periodika
441
Číslo periodika v rámci svazku
AUG
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
262-278
Kód UT WoS článku
000812960300012
EID výsledku v databázi Scopus
2-s2.0-85125501716