Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F22%3A73616931" target="_blank" >RIV/61989592:15310/22:73616931 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S016501142200063X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S016501142200063X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.fss.2022.02.013" target="_blank" >10.1016/j.fss.2022.02.013</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval

  • Popis výsledku v původním jazyce

    In numerous generalizations of the original theory of fuzzy sets proposed by Zadeh, the considered membership degrees are often taken from lattices isomorphic to the lattice LI of closed subintervals of the unit interval [0, 1]. This is, for example, the case of intuitionistic values, Pythagorean values or q-rung orthopair values. The mentioned isomorphisms allow to transfer the results obtained for the lattice LI directly to the other mentioned lattices. In particular, basic connectives in Zadeh&apos;s fuzzy set theory, i.e., special functions on the lattice [0, 1], can be extended to the interval-valued connectives, i.e., to special functions on the lattice LI , and then to the connectives on the lattices L* of intuitionistic values, P of Pythagorean values, and also on the lattice L tau q of q-rung orthopair values. We give several examples of such connectives, in particular, of those which are related to strict t-norms. For all these connectives we show their link to an additive generator f of the considered strict t-norm T. Based on our approach, many results discussed in numerous papers can be treated in a unique framework, and the same is valid for possible newly proposed types of connectives based on strict t-norms. Due to this approach, a lot of tedious proofs of the properties of the proposed connectives could be avoided, which gives researchers more space for presented applications.

  • Název v anglickém jazyce

    Aggregation on lattices isomorphic to the lattice of closed subintervals of the real unit interval

  • Popis výsledku anglicky

    In numerous generalizations of the original theory of fuzzy sets proposed by Zadeh, the considered membership degrees are often taken from lattices isomorphic to the lattice LI of closed subintervals of the unit interval [0, 1]. This is, for example, the case of intuitionistic values, Pythagorean values or q-rung orthopair values. The mentioned isomorphisms allow to transfer the results obtained for the lattice LI directly to the other mentioned lattices. In particular, basic connectives in Zadeh&apos;s fuzzy set theory, i.e., special functions on the lattice [0, 1], can be extended to the interval-valued connectives, i.e., to special functions on the lattice LI , and then to the connectives on the lattices L* of intuitionistic values, P of Pythagorean values, and also on the lattice L tau q of q-rung orthopair values. We give several examples of such connectives, in particular, of those which are related to strict t-norms. For all these connectives we show their link to an additive generator f of the considered strict t-norm T. Based on our approach, many results discussed in numerous papers can be treated in a unique framework, and the same is valid for possible newly proposed types of connectives based on strict t-norms. Due to this approach, a lot of tedious proofs of the properties of the proposed connectives could be avoided, which gives researchers more space for presented applications.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FUZZY SETS AND SYSTEMS

  • ISSN

    0165-0114

  • e-ISSN

    1872-6801

  • Svazek periodika

    441

  • Číslo periodika v rámci svazku

    AUG

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    17

  • Strana od-do

    262-278

  • Kód UT WoS článku

    000812960300012

  • EID výsledku v databázi Scopus

    2-s2.0-85125501716