Generalized-Hukuhara subdifferential analysis and its application in nonconvex composite interval optimization problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73616918" target="_blank" >RIV/61989592:15310/23:73616918 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025522014438" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522014438</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.11.133" target="_blank" >10.1016/j.ins.2022.11.133</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalized-Hukuhara subdifferential analysis and its application in nonconvex composite interval optimization problems
Popis výsledku v původním jazyce
In this article, we study calculus for gH-subdifferential of convex interval-valued functions (IVFs) and apply it in a nonconvex composite model of an interval optimization problem (IOP). Towards this, we define convexity, convex hull, closedness, and boundedness of a set of interval vectors. In identifying the closedness of the convex hull of a set of interval vectors and the union of closed sets, we analyze the convergence of the sequence of interval vectors. We prove a relation on the gH-directional derivative of the maximum of finitely many comparable IVFs. With the help of existing calculus on the gH-subdifferential of an IVF, we derive a Fritz-John-type and a KKT-type efficiency condition for weak efficient solutions of IOPs. In the sequel, we analyze the supremum and infimum of a set of intervals. Further, we report a characterization of the weak efficient solutions of nonconvex composite IOPs by applying the proposed concepts. The whole analysis is supported by illustrative examples.
Název v anglickém jazyce
Generalized-Hukuhara subdifferential analysis and its application in nonconvex composite interval optimization problems
Popis výsledku anglicky
In this article, we study calculus for gH-subdifferential of convex interval-valued functions (IVFs) and apply it in a nonconvex composite model of an interval optimization problem (IOP). Towards this, we define convexity, convex hull, closedness, and boundedness of a set of interval vectors. In identifying the closedness of the convex hull of a set of interval vectors and the union of closed sets, we analyze the convergence of the sequence of interval vectors. We prove a relation on the gH-directional derivative of the maximum of finitely many comparable IVFs. With the help of existing calculus on the gH-subdifferential of an IVF, we derive a Fritz-John-type and a KKT-type efficiency condition for weak efficient solutions of IOPs. In the sequel, we analyze the supremum and infimum of a set of intervals. Further, we report a characterization of the weak efficient solutions of nonconvex composite IOPs by applying the proposed concepts. The whole analysis is supported by illustrative examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
622
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
771-793
Kód UT WoS článku
000900836600006
EID výsledku v databázi Scopus
2-s2.0-85145261326