Tensor Decompositions and Their Properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73619705" target="_blank" >RIV/61989592:15310/23:73619705 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/11/17/3638" target="_blank" >https://www.mdpi.com/2227-7390/11/17/3638</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11173638" target="_blank" >10.3390/math11173638</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tensor Decompositions and Their Properties
Popis výsledku v původním jazyce
In the present paper, we study two different approaches of tensor decomposition. The first part aims to study some properties of tensors that result from the fact that some components are vanishing in certain coordinates. It is proven that these conditions allow tensor decomposition, especially (1, s), s = 1, 2, 3 tensors. We apply the results for special tensors such as the Riemann, Ricci, Einstein, and Weyl tensors and the deformation tensors of affine connections. Thereby, we find new criteria for the Einstein spaces, spaces of constant curvature, and projective and conformal flat spaces. Further, the proof of the theorem of Mikeš and Moldobayev is repaired. It has been used in many works and it is a generalization of the criteria formulated by Schouten and Struik. The second part deals with the properties of a special differential operator with respect to the general decomposition of tensor fields on manifolds with affine connection. It is shown that the properties of special differential operators are transferred to the components of a given decomposition.
Název v anglickém jazyce
Tensor Decompositions and Their Properties
Popis výsledku anglicky
In the present paper, we study two different approaches of tensor decomposition. The first part aims to study some properties of tensors that result from the fact that some components are vanishing in certain coordinates. It is proven that these conditions allow tensor decomposition, especially (1, s), s = 1, 2, 3 tensors. We apply the results for special tensors such as the Riemann, Ricci, Einstein, and Weyl tensors and the deformation tensors of affine connections. Thereby, we find new criteria for the Einstein spaces, spaces of constant curvature, and projective and conformal flat spaces. Further, the proof of the theorem of Mikeš and Moldobayev is repaired. It has been used in many works and it is a generalization of the criteria formulated by Schouten and Struik. The second part deals with the properties of a special differential operator with respect to the general decomposition of tensor fields on manifolds with affine connection. It is shown that the properties of special differential operators are transferred to the components of a given decomposition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
11
Číslo periodika v rámci svazku
17
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
"3638-1"-"3638-13"
Kód UT WoS článku
001061104900001
EID výsledku v databázi Scopus
2-s2.0-85176443233