Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Reconstruction of an affine connection in generalized Fermi coordinates

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73579190" target="_blank" >RIV/61989592:15310/17:73579190 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26110/17:PU118538

  • Výsledek na webu

    <a href="http://link.springer.com/article/10.1007/s40840-016-0316-4" target="_blank" >http://link.springer.com/article/10.1007/s40840-016-0316-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s40840-016-0316-4" target="_blank" >10.1007/s40840-016-0316-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Reconstruction of an affine connection in generalized Fermi coordinates

  • Popis výsledku v původním jazyce

    On a manifold with affine connection, we introduce special pre-semigeodesic charts which generalize Fermi coordinates. We use a version of the Peano’s–Picard’s-Cauchy-like Theorem on the initial values problem for systems of ODSs. In a fixed pre-semigeodesic chart of a manifold with a symmetric affine connection, we reconstruct, or construct, the connection in some neighborhood from the knowledge of the “initial values”, namely the restriction of the components of connection to a fixed surface S and from some of the components of the curvature tensor R in the full coordinate domain. In Riemannian space, analogous methods are used to retrieve (or construct) the metric tensor of a pseudo-Riemannian manifold in a domain of semigeodesic coordinates from the known restriction of the metric to some non-isotropic hypersurface and some of the components of the curvature tensor of type (0, 4) in the ambient space.

  • Název v anglickém jazyce

    Reconstruction of an affine connection in generalized Fermi coordinates

  • Popis výsledku anglicky

    On a manifold with affine connection, we introduce special pre-semigeodesic charts which generalize Fermi coordinates. We use a version of the Peano’s–Picard’s-Cauchy-like Theorem on the initial values problem for systems of ODSs. In a fixed pre-semigeodesic chart of a manifold with a symmetric affine connection, we reconstruct, or construct, the connection in some neighborhood from the knowledge of the “initial values”, namely the restriction of the components of connection to a fixed surface S and from some of the components of the curvature tensor R in the full coordinate domain. In Riemannian space, analogous methods are used to retrieve (or construct) the metric tensor of a pseudo-Riemannian manifold in a domain of semigeodesic coordinates from the known restriction of the metric to some non-isotropic hypersurface and some of the components of the curvature tensor of type (0, 4) in the ambient space.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannova, pseudo-Riemannova a afinní diferenciální geometrie</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bulletin of the Malaysian Mathematical Sciences Society

  • ISSN

    0126-6705

  • e-ISSN

  • Svazek periodika

    40

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    "205–213."

  • Kód UT WoS článku

    000392066900011

  • EID výsledku v databázi Scopus