Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

C-ideals in complemented posets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73621057" target="_blank" >RIV/61989592:15310/24:73621057 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://mbpapers.math.cas.cz/full/149/3/mb149_3_3.pdf" target="_blank" >https://mbpapers.math.cas.cz/full/149/3/mb149_3_3.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.21136/MB.2023.0108-22" target="_blank" >10.21136/MB.2023.0108-22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    C-ideals in complemented posets

  • Popis výsledku v původním jazyce

    In their recent paper on posets with a pseudocomplementation denoted by * the first and the third author introduced the concept of a *-ideal. This concept is in fact an extension of a similar concept introduced in distributive pseudocomplemented lattices and semilattices by several authors, see References. Now we apply this concept of a c-ideal (dually, c-filter) to complemented posets where the complementation need neither be antitone nor an involution, but still satisfies some weak conditions. We show when an ideal or filter in such a poset is a c-ideal or c-filter, and we prove basic properties of them. Finally, we prove the so-called separation theorems for c-ideals. The text is illustrated by several examples.

  • Název v anglickém jazyce

    C-ideals in complemented posets

  • Popis výsledku anglicky

    In their recent paper on posets with a pseudocomplementation denoted by * the first and the third author introduced the concept of a *-ideal. This concept is in fact an extension of a similar concept introduced in distributive pseudocomplemented lattices and semilattices by several authors, see References. Now we apply this concept of a c-ideal (dually, c-filter) to complemented posets where the complementation need neither be antitone nor an involution, but still satisfies some weak conditions. We show when an ideal or filter in such a poset is a c-ideal or c-filter, and we prove basic properties of them. Finally, we prove the so-called separation theorems for c-ideals. The text is illustrated by several examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-09869L" target="_blank" >GF20-09869L: Ortomodularita z různých pohledů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematica Bohemica

  • ISSN

    0862-7959

  • e-ISSN

    2464-7136

  • Svazek periodika

    149

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    12

  • Strana od-do

    305-316

  • Kód UT WoS článku

    001023524300001

  • EID výsledku v databázi Scopus

    2-s2.0-85205872224