Similarity metrics vs human judgment of similarity for binary data: Which is best to predict typicality?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627221" target="_blank" >RIV/61989592:15310/24:73627221 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494624000449" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494624000449</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2024.111270" target="_blank" >10.1016/j.asoc.2024.111270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Similarity metrics vs human judgment of similarity for binary data: Which is best to predict typicality?
Popis výsledku v původním jazyce
Similarity measures for binary data have been subject to a number of comparative studies. In contrast to these studies, we provide a comparison of similarity measures with human judgment of similarity. For this purpose, we utilize the phenomenon of typicality, whose definition is based on similarity. We observe how well the similarity of objects – either computed by a similarity measure or provided by human judgment – enables the prediction of typicality of these objects in various human categories. In doing so, we examine a large variety of existing similarity measures, and utilize recently available extensive data involving binary data as well as data on human judgment of similarity and typicality.
Název v anglickém jazyce
Similarity metrics vs human judgment of similarity for binary data: Which is best to predict typicality?
Popis výsledku anglicky
Similarity measures for binary data have been subject to a number of comparative studies. In contrast to these studies, we provide a comparison of similarity measures with human judgment of similarity. For this purpose, we utilize the phenomenon of typicality, whose definition is based on similarity. We observe how well the similarity of objects – either computed by a similarity measure or provided by human judgment – enables the prediction of typicality of these objects in various human categories. In doing so, we examine a large variety of existing similarity measures, and utilize recently available extensive data involving binary data as well as data on human judgment of similarity and typicality.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED SOFT COMPUTING
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
153
Číslo periodika v rámci svazku
MAR
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
"111270-1"-"111270-13"
Kód UT WoS článku
001174778800001
EID výsledku v databázi Scopus
2-s2.0-85183188913