Representation and Embedding of PseudoMV-algebras with Square Roots II. Closures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627588" target="_blank" >RIV/61989592:15310/24:73627588 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Representation and Embedding of PseudoMV-algebras with Square Roots II. Closures
Popis výsledku v původním jazyce
In [9], we started the investigation of pseudo MV-algebras with square roots. In the present paper, the main aim is to continue to study the structure of pseudo MV-algebras with square roots focusing on their new characterizations. The paper is divided into two parts. In the first part, we investigate the relationship between a pseudo MV-algebra with square root and its corresponding unital & ell;-group in the scene of two-divisibility. We characterize strict and non-strict square roots, and we describe square roots on strongly(H,1)-perfect pseudo MV-algebras. In the present second part, we find some conditions under which a particular class of pseudo MV-algebras can be embedded into pseudo MV-algebras with square roots. We compare both the concepts of a strict square root closure and a square root closure of a pseudo MV-algebra. We show that each MV-algebra has a square root closure. Finally, using the square root of individual elements of a pseudo MV-algebra, we find the greatest subalgebra of a special pseudo MV-algebra with weak square root.
Název v anglickém jazyce
Representation and Embedding of PseudoMV-algebras with Square Roots II. Closures
Popis výsledku anglicky
In [9], we started the investigation of pseudo MV-algebras with square roots. In the present paper, the main aim is to continue to study the structure of pseudo MV-algebras with square roots focusing on their new characterizations. The paper is divided into two parts. In the first part, we investigate the relationship between a pseudo MV-algebra with square root and its corresponding unital & ell;-group in the scene of two-divisibility. We characterize strict and non-strict square roots, and we describe square roots on strongly(H,1)-perfect pseudo MV-algebras. In the present second part, we find some conditions under which a particular class of pseudo MV-algebras can be embedded into pseudo MV-algebras with square roots. We compare both the concepts of a strict square root closure and a square root closure of a pseudo MV-algebra. We show that each MV-algebra has a square root closure. Finally, using the square root of individual elements of a pseudo MV-algebra, we find the greatest subalgebra of a special pseudo MV-algebra with weak square root.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Logics
ISSN
2631-9810
e-ISSN
2631-9829
Svazek periodika
11
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
35
Strana od-do
529-563
Kód UT WoS článku
001308414500005
EID výsledku v databázi Scopus
2-s2.0-85202794647