Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Principal Component Analysis for Distributions Observed by Samples in Bayes Spaces

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73627773" target="_blank" >RIV/61989592:15310/24:73627773 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s11004-024-10142-9" target="_blank" >https://link.springer.com/article/10.1007/s11004-024-10142-9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11004-024-10142-9" target="_blank" >10.1007/s11004-024-10142-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Principal Component Analysis for Distributions Observed by Samples in Bayes Spaces

  • Popis výsledku v původním jazyce

    Distributional data have recently become increasingly important for understanding processes in the geosciences, thanks to the establishment of cost-efficient analytical instruments capable of measuring properties over large numbers of particles, grains or crystals in a sample. Functional data analysis allows the direct application of multivariate methods, such as principal component analysis, to such distributions. However, these are often observed in the form of samples, and thus incur a sampling error. This additional sampling error changes the properties of the multivariate variance and thus the number of relevant principal components and their direction. The result of the principal component analysis becomes an artifact of the sampling error and can negatively affect the subsequent data analysis. This work presents a way of estimating this sampling error and how to confront it in the context of principal component analysis, where the principal components are obtained as a linear combination of elements of a newly constructed orthogonal spline basis. The effect of the sampling error and th effectiveness of the correction is demonstrated with a series of simulations. It is shown how the interpretability and reproducibility of the principal components improve and become independent of the selection of the basis. The proposed method is then applied on a dataset of grain size distributions in a geometallurgical dataset from Thaba mine in the Bushveld complex.

  • Název v anglickém jazyce

    Principal Component Analysis for Distributions Observed by Samples in Bayes Spaces

  • Popis výsledku anglicky

    Distributional data have recently become increasingly important for understanding processes in the geosciences, thanks to the establishment of cost-efficient analytical instruments capable of measuring properties over large numbers of particles, grains or crystals in a sample. Functional data analysis allows the direct application of multivariate methods, such as principal component analysis, to such distributions. However, these are often observed in the form of samples, and thus incur a sampling error. This additional sampling error changes the properties of the multivariate variance and thus the number of relevant principal components and their direction. The result of the principal component analysis becomes an artifact of the sampling error and can negatively affect the subsequent data analysis. This work presents a way of estimating this sampling error and how to confront it in the context of principal component analysis, where the principal components are obtained as a linear combination of elements of a newly constructed orthogonal spline basis. The effect of the sampling error and th effectiveness of the correction is demonstrated with a series of simulations. It is shown how the interpretability and reproducibility of the principal components improve and become independent of the selection of the basis. The proposed method is then applied on a dataset of grain size distributions in a geometallurgical dataset from Thaba mine in the Bushveld complex.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF22-15684L" target="_blank" >GF22-15684L: Zobecněná relativní data a robustnost v Bayesových prostorech</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Geosciences

  • ISSN

    1874-8961

  • e-ISSN

    1874-8953

  • Svazek periodika

    56

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    29

  • Strana od-do

    1641-1669

  • Kód UT WoS článku

    001216033100001

  • EID výsledku v databázi Scopus

    2-s2.0-85192019581