Building landslide inventory with LiDAR data and deep learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F24%3A73628433" target="_blank" >RIV/61989592:15310/24:73628433 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/B978-0-12-823868-4.00014-3" target="_blank" >http://dx.doi.org/10.1016/B978-0-12-823868-4.00014-3</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/B978-0-12-823868-4.00014-3" target="_blank" >10.1016/B978-0-12-823868-4.00014-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Building landslide inventory with LiDAR data and deep learning
Popis výsledku v původním jazyce
The integration of data collection, cloud technologies, and artificial intelligence offers new opportunities to study Earth processes and landforms. These advances are bringing more comprehensive knowledge to the geosciences, enabling a detailed understanding of landforms and natural hazards from local to planetary scales. A shift from heuristic to data-based approaches is improving the objectivity of geoscientific analyses but is limited by data quality and availability, especially at regional scales. Landslides, influenced by geological and human factors, are an example of natural processes becoming disasters due to urbanization. Understanding past and present landslide conditions is crucial for future predictions, highlighting the importance of accurate landslide inventories. This study aims to train and evaluate deep learning models, specifically U-Net and DeepLabV3, for landslide detection and mapping in the Czech Republic using LiDAR data and landslide inventories. Results show that DeepLabV3 outperforms U-Net in accuracy, recall, and F1 score, suggesting its higher effectiveness in landslide detection. Challenges include data quality, resolution, and hillshade limitations, highlighting the need for high-quality input data for reliable AI-based geoscience applications.
Název v anglickém jazyce
Building landslide inventory with LiDAR data and deep learning
Popis výsledku anglicky
The integration of data collection, cloud technologies, and artificial intelligence offers new opportunities to study Earth processes and landforms. These advances are bringing more comprehensive knowledge to the geosciences, enabling a detailed understanding of landforms and natural hazards from local to planetary scales. A shift from heuristic to data-based approaches is improving the objectivity of geoscientific analyses but is limited by data quality and availability, especially at regional scales. Landslides, influenced by geological and human factors, are an example of natural processes becoming disasters due to urbanization. Understanding past and present landslide conditions is crucial for future predictions, highlighting the importance of accurate landslide inventories. This study aims to train and evaluate deep learning models, specifically U-Net and DeepLabV3, for landslide detection and mapping in the Czech Republic using LiDAR data and landslide inventories. Results show that DeepLabV3 outperforms U-Net in accuracy, recall, and F1 score, suggesting its higher effectiveness in landslide detection. Challenges include data quality, resolution, and hillshade limitations, highlighting the need for high-quality input data for reliable AI-based geoscience applications.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Earth Observation Applications to Landslide Mapping, Monitoring and Modeling
ISBN
978-0-12-823868-4
Počet stran výsledku
12
Strana od-do
297-309
Počet stran knihy
311
Název nakladatele
Elsevier Ltd.
Místo vydání
Netherlands
Kód UT WoS kapitoly
—