Development of combinatorial thinking by means of non-standard geometric problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15410%2F21%3A73611441" target="_blank" >RIV/61989592:15410/21:73611441 - isvavai.cz</a>
Výsledek na webu
<a href="https://library.iated.org/view/PASTOR2021DEV" target="_blank" >https://library.iated.org/view/PASTOR2021DEV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21125/edulearn.2021.0698" target="_blank" >10.21125/edulearn.2021.0698</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Development of combinatorial thinking by means of non-standard geometric problems
Popis výsledku v původním jazyce
Both combinatorics and geometry are very important components of mathematics education, so it seems to be useful to develop the combinatorial thinking by means of non-standard geometric problems. Combinatorial geometry studies geometric objects and their combinatorial structure. Specially, covering chessboard problems can be very attractive for students. For example, the well-known Gomory problem deals with the situation when we remove two arbitrary squares of different colors from the chessboard, and then we ask if it is possible to cover the remaining portion of the board with dominoes without disturbing the original piece. In our paper, we will focus on geometric problems developing combinatorial thinking from the Mathematical Kangaroo competition, Junior category. We will show examples of such interesting problems with their solutions. We will also show how to use Geogebra program during solution of some non-standard geometric problems (requiring combinatorial considerations), thus helping to develop digital literacy of pupils. We will look, using Spearman's correlation coefficient, at the relationship between the number of examples requiring combinatorial considerations and the number of solvers with excellent results.
Název v anglickém jazyce
Development of combinatorial thinking by means of non-standard geometric problems
Popis výsledku anglicky
Both combinatorics and geometry are very important components of mathematics education, so it seems to be useful to develop the combinatorial thinking by means of non-standard geometric problems. Combinatorial geometry studies geometric objects and their combinatorial structure. Specially, covering chessboard problems can be very attractive for students. For example, the well-known Gomory problem deals with the situation when we remove two arbitrary squares of different colors from the chessboard, and then we ask if it is possible to cover the remaining portion of the board with dominoes without disturbing the original piece. In our paper, we will focus on geometric problems developing combinatorial thinking from the Mathematical Kangaroo competition, Junior category. We will show examples of such interesting problems with their solutions. We will also show how to use Geogebra program during solution of some non-standard geometric problems (requiring combinatorial considerations), thus helping to develop digital literacy of pupils. We will look, using Spearman's correlation coefficient, at the relationship between the number of examples requiring combinatorial considerations and the number of solvers with excellent results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EDULEARN21 Proceedings
ISBN
978-84-09-31267-2
ISSN
2340-1117
e-ISSN
—
Počet stran výsledku
4
Strana od-do
3287-3290
Název nakladatele
International Association of Technology, Education and Development (IATED)
Místo vydání
Madrid
Místo konání akce
Palma
Datum konání akce
5. 7. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—