The Accuracy of Computational Results from Wolfram Mathematica in the Context of Summation in Trigonometry
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15410%2F23%3A73621281" target="_blank" >RIV/61989592:15410/23:73621281 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/computation11110222" target="_blank" >https://doi.org/10.3390/computation11110222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/computation11110222" target="_blank" >10.3390/computation11110222</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Accuracy of Computational Results from Wolfram Mathematica in the Context of Summation in Trigonometry
Popis výsledku v původním jazyce
The article explores the accessibility of symbolic computations, such as using the Wolfram Mathematica environment, in promoting the shift from informal experimentation to formal mathematical justifications. We investigate the accuracy of computational results from mathematical software in the context of a certain summation in trigonometry. In particular, the key issue addressed here is the calculated sum ∑44????=0tan(1+4????)°. This paper utilizes Wolfram Mathematica to handle the irrational numbers in the sum more accurately, which it achieves by representing them symbolically rather than using numerical approximations. Can we rely on the calculated result from Wolfram, especially if almost all the addends are irrational, or must the students eventually prove it mathematically? It is clear that the problem can be solved using software; however, the nature of the result raises questions about its correctness, and this inherent informality can encourage a few students to seek viable mathematical proofs. In this way, a balance is reached between formal and informal mathematics.
Název v anglickém jazyce
The Accuracy of Computational Results from Wolfram Mathematica in the Context of Summation in Trigonometry
Popis výsledku anglicky
The article explores the accessibility of symbolic computations, such as using the Wolfram Mathematica environment, in promoting the shift from informal experimentation to formal mathematical justifications. We investigate the accuracy of computational results from mathematical software in the context of a certain summation in trigonometry. In particular, the key issue addressed here is the calculated sum ∑44????=0tan(1+4????)°. This paper utilizes Wolfram Mathematica to handle the irrational numbers in the sum more accurately, which it achieves by representing them symbolically rather than using numerical approximations. Can we rely on the calculated result from Wolfram, especially if almost all the addends are irrational, or must the students eventually prove it mathematically? It is clear that the problem can be solved using software; however, the nature of the result raises questions about its correctness, and this inherent informality can encourage a few students to seek viable mathematical proofs. In this way, a balance is reached between formal and informal mathematics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computation
ISSN
2079-3197
e-ISSN
2079-3197
Svazek periodika
11
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
"222: 6 November 2023"
Kód UT WoS článku
001107791300001
EID výsledku v databázi Scopus
2-s2.0-85178283452