Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15510%2F24%3A73627087" target="_blank" >RIV/61989592:15510/24:73627087 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://pmc.ncbi.nlm.nih.gov/articles/PMC10955742/" target="_blank" >https://pmc.ncbi.nlm.nih.gov/articles/PMC10955742/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5114/biolsport.2024.132987" target="_blank" >10.5114/biolsport.2024.132987</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription

  • Popis výsledku v původním jazyce

    OpenAI&apos;s Chat Generative Pre-trained Transformer (ChatGPT) technology enables conversational interactions with applications across various fields, including sport. Here, ChatGPT&apos;s proficiency in designing a 12-week resistance training programme, following specific prompts, was investigated. GPT3.5 and GPT4.0 versions were requested to design 12-week resistance training programmes for male and female hypothetical subjects (20-years-old, no injury, and &apos;intermediate&apos; resistance training experience). Subsequently, GPT4.0 was requested to design an &apos;advanced&apos; training programme for the same profiles. The proposed training programmes were compared with established guidelines and literature (e.g., National Strength and Conditioning Association textbook), and discussed. ChatGPT suggested 12-week training programmes comprising three, 4-week phases, each with different objectives (e.g., hypertrophy/strength). GPT3.5 proposed a weekly frequency of similar to 3 sessions, load intensity of 70-85% of one repetition-maximum, repetition range of 4-8 (2-4 sets), and tempo of 2/0/2 (eccentric/pause/concentric/&apos;pause&apos;). GPT4.0 proposed intermediate- and advanced programme, with a frequency of 5 or 4 sessions, 60-90% or 70-95% intensity, 3-5 sets or 3-6 sets, 5-12 or 3-12 repetitions, respectively. GPT3.5 proposed rest intervals of 90-120 s, and exercise tempo of 2/0/2. GPT4.0 proposed 60-180 (intermediate) or 60-300 s (advanced), with exercise tempo of 2/1/2 for intermediates, and 3/0/1/0, 2/0/1/0, and 1/0/1/0 for advanced programmes. All derived programmes were objectively similar regardless of sex. ChatGPT generated training programmes which likely require additional fine-tuning before application. GPT4.0 synthesised more information than GPT3.5 in response to the prompt, and demonstrated recognition awareness of training experience (intermediate vs advanced). ChatGPT may serve as a complementary tool for writing &apos;draft&apos; programme, but likely requires human expertise to maximise training programme effectiveness.

  • Název v anglickém jazyce

    Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription

  • Popis výsledku anglicky

    OpenAI&apos;s Chat Generative Pre-trained Transformer (ChatGPT) technology enables conversational interactions with applications across various fields, including sport. Here, ChatGPT&apos;s proficiency in designing a 12-week resistance training programme, following specific prompts, was investigated. GPT3.5 and GPT4.0 versions were requested to design 12-week resistance training programmes for male and female hypothetical subjects (20-years-old, no injury, and &apos;intermediate&apos; resistance training experience). Subsequently, GPT4.0 was requested to design an &apos;advanced&apos; training programme for the same profiles. The proposed training programmes were compared with established guidelines and literature (e.g., National Strength and Conditioning Association textbook), and discussed. ChatGPT suggested 12-week training programmes comprising three, 4-week phases, each with different objectives (e.g., hypertrophy/strength). GPT3.5 proposed a weekly frequency of similar to 3 sessions, load intensity of 70-85% of one repetition-maximum, repetition range of 4-8 (2-4 sets), and tempo of 2/0/2 (eccentric/pause/concentric/&apos;pause&apos;). GPT4.0 proposed intermediate- and advanced programme, with a frequency of 5 or 4 sessions, 60-90% or 70-95% intensity, 3-5 sets or 3-6 sets, 5-12 or 3-12 repetitions, respectively. GPT3.5 proposed rest intervals of 90-120 s, and exercise tempo of 2/0/2. GPT4.0 proposed 60-180 (intermediate) or 60-300 s (advanced), with exercise tempo of 2/1/2 for intermediates, and 3/0/1/0, 2/0/1/0, and 1/0/1/0 for advanced programmes. All derived programmes were objectively similar regardless of sex. ChatGPT generated training programmes which likely require additional fine-tuning before application. GPT4.0 synthesised more information than GPT3.5 in response to the prompt, and demonstrated recognition awareness of training experience (intermediate vs advanced). ChatGPT may serve as a complementary tool for writing &apos;draft&apos; programme, but likely requires human expertise to maximise training programme effectiveness.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    30306 - Sport and fitness sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BIOLOGY OF SPORT

  • ISSN

    0860-021X

  • e-ISSN

    2083-1862

  • Svazek periodika

    41

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    PL - Polská republika

  • Počet stran výsledku

    12

  • Strana od-do

    209-220

  • Kód UT WoS článku

    001184338700025

  • EID výsledku v databázi Scopus

    2-s2.0-85188156691