Engineering shape anisotropy of Fe3O4-γ-Fe2O3Hollow nanoparticles for magnetic hyperthermia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15640%2F21%3A73610912" target="_blank" >RIV/61989592:15640/21:73610912 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsanm.1c00311" target="_blank" >https://pubs.acs.org/doi/10.1021/acsanm.1c00311</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsanm.1c00311" target="_blank" >10.1021/acsanm.1c00311</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Engineering shape anisotropy of Fe3O4-γ-Fe2O3Hollow nanoparticles for magnetic hyperthermia
Popis výsledku v původním jazyce
The use of microwave-assisted synthesis (in water) of alpha-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-gamma-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m(2) kg(-1) (NRs) and 465 W/g and 3.3 nH m(2) kg(-1) (NTS), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (beta-MDH) theoretical model.
Název v anglickém jazyce
Engineering shape anisotropy of Fe3O4-γ-Fe2O3Hollow nanoparticles for magnetic hyperthermia
Popis výsledku anglicky
The use of microwave-assisted synthesis (in water) of alpha-Fe2O3 nanomaterials followed by their transformation onto iron oxide Fe3O4-gamma-Fe2O3 hollow nanoparticles encoding well-defined sizes and shapes [nanorings (NRs) and nanotubes (NTs)] is henceforth described. The impact of experimental variables such as concentration of reactants, volume of solvent employed, and reaction times/temperatures during the shape-controlled synthesis revealed that the key factor that gated generation of morphologically diverse nanoparticles was associated to the initial concentration of phosphate anions employed in the reactant mixture. All the nanomaterials presented were fully characterized by powder X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, Mossbauer spectroscopy, and superconducting quantum interference device (SQUID). The hollow nanoparticles that expressed the most promising magnetic responses, NTs and NRs, were further tested in terms of efficiencies in controlling the magnetic hyperthermia, in view of their possible use for biomedical applications, supported by their excellent viability as screened by in vitro cytotoxicity tests. These systems NTs and NRs expressed very good magneto-hyperthermia properties, results that were further validated by micromagnetic simulations. The observed specific absorption rate (SAR) and intrinsic loss power of the NRs and NTs peaked the values of 340 W/g and 2.45 nH m(2) kg(-1) (NRs) and 465 W/g and 3.3 nH m(2) kg(-1) (NTS), respectively, at the maximum clinical field 450 Oe and under a frequency of 107 kHz and are the highest values among those reported so far in the hollow iron-oxide family. The higher SAR in NTs accounts the importance of magnetic shape anisotropy, which is well-predicted by the modified dynamic hysteresis (beta-MDH) theoretical model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_048%2F0007323" target="_blank" >EF17_048/0007323: Rozvoj předaplikačního výzkumu v oblasti nano- a biotechnologií</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Applied Nano Materials
ISSN
2574-0970
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
"3148 "- 3158
Kód UT WoS článku
000635462900088
EID výsledku v databázi Scopus
2-s2.0-85103516145