Automatic Sentiment Analysis Using the Textual Pattern Content Similarity in Natural Language
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F10%3A00159734" target="_blank" >RIV/62156489:43110/10:00159734 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Sentiment Analysis Using the Textual Pattern Content Similarity in Natural Language
Popis výsledku v původním jazyce
The paper investigates a problem connected with automatic analysis of sentiment (opinion) in textual natural-language documents. The initial situation works on the assumption that a user has many documents centered around a certain topic with different opinions of it. The user wants to pick out only relevant documents that represent a certain sentiment -- for example, only positive reviews of a certain subject. Having not too many typical patterns of the desired document type, the user needs a tool thatcan collect documents which are similar to the patterns. The suggested procedure is based on computing the similarity degree between patterns and unlabeled documents, which are then ranked according to their similarity to the patterns. The similarity iscalculated as a distance between patterns and unlabeled items. The results are shown for publicly accessible downloaded real-world data in two languages, English and Czech.
Název v anglickém jazyce
Automatic Sentiment Analysis Using the Textual Pattern Content Similarity in Natural Language
Popis výsledku anglicky
The paper investigates a problem connected with automatic analysis of sentiment (opinion) in textual natural-language documents. The initial situation works on the assumption that a user has many documents centered around a certain topic with different opinions of it. The user wants to pick out only relevant documents that represent a certain sentiment -- for example, only positive reviews of a certain subject. Having not too many typical patterns of the desired document type, the user needs a tool thatcan collect documents which are similar to the patterns. The suggested procedure is based on computing the similarity degree between patterns and unlabeled documents, which are then ranked according to their similarity to the patterns. The similarity iscalculated as a distance between patterns and unlabeled items. The results are shown for publicly accessible downloaded real-world data in two languages, English and Czech.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Svazek periodika
6231
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
—
Kód UT WoS článku
288619400029
EID výsledku v databázi Scopus
—