Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Sentiment Analysis Using the Textual Pattern Content Similarity in Natural Language

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F10%3A00159734" target="_blank" >RIV/62156489:43110/10:00159734 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Sentiment Analysis Using the Textual Pattern Content Similarity in Natural Language

  • Popis výsledku v původním jazyce

    The paper investigates a problem connected with automatic analysis of sentiment (opinion) in textual natural-language documents. The initial situation works on the assumption that a user has many documents centered around a certain topic with different opinions of it. The user wants to pick out only relevant documents that represent a certain sentiment -- for example, only positive reviews of a certain subject. Having not too many typical patterns of the desired document type, the user needs a tool thatcan collect documents which are similar to the patterns. The suggested procedure is based on computing the similarity degree between patterns and unlabeled documents, which are then ranked according to their similarity to the patterns. The similarity iscalculated as a distance between patterns and unlabeled items. The results are shown for publicly accessible downloaded real-world data in two languages, English and Czech.

  • Název v anglickém jazyce

    Automatic Sentiment Analysis Using the Textual Pattern Content Similarity in Natural Language

  • Popis výsledku anglicky

    The paper investigates a problem connected with automatic analysis of sentiment (opinion) in textual natural-language documents. The initial situation works on the assumption that a user has many documents centered around a certain topic with different opinions of it. The user wants to pick out only relevant documents that represent a certain sentiment -- for example, only positive reviews of a certain subject. Having not too many typical patterns of the desired document type, the user needs a tool thatcan collect documents which are similar to the patterns. The suggested procedure is based on computing the similarity degree between patterns and unlabeled documents, which are then ranked according to their similarity to the patterns. The similarity iscalculated as a distance between patterns and unlabeled items. The results are shown for publicly accessible downloaded real-world data in two languages, English and Czech.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Lecture Notes in Artificial Intelligence

  • ISSN

    0302-9743

  • e-ISSN

  • Svazek periodika

    6231

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    8

  • Strana od-do

  • Kód UT WoS článku

    288619400029

  • EID výsledku v databázi Scopus